[OpenCV][Python]路徑有中文一樣能讀取圖檔

更新於 2024/05/24閱讀時間約 2 分鐘

使用cv2.imread讀取圖片時,如果路徑有包含到中文,就會報錯。

本文將提供另外一個方式cv2.imdecode,路徑有包含到中文時仍可以正常讀取圖片。


測試範例

import cv2

img = cv2.imread('D:/CRABpy/write/圖檔/chars_01.png')

cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

異常報錯​

raw-image

程式範例

import cv2
import numpy as np


file_path = 'D:/CRABpy/write/圖檔/chars_01.png'
img = cv2.imdecode(np.fromfile(file=file_path, dtype=np.uint8), cv2.IMREAD_COLOR)

cv2.imwrite('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

成功讀取圖

img

img



語法說明

cv2.imdecode(np.fromfile(file=file_path, dtype=np.uint8), cv2.IMREAD_COLOR)


這種用法主要用來處理檔案路徑包含非 ASCII 字元的情況(例如中文路徑),以及解決某些情況下 OpenCV cv2.imread 讀取圖像失敗的問題。

這個方法的原理是先使用 numpy.fromfile 讀取二進位檔案資料,然後再使用 OpenCV 的 cv2.imdecode 將二進位資料解碼成圖像。這樣可以避免一些路徑編碼問題。

以下是這段程式碼的詳細說明:

  1. np.fromfile(file=file_path, dtype=np.uint8)
    • np.fromfile 用來從檔案中讀取二進位資料。
    • file=file_path 指定檔案路徑。
    • dtype=np.uint8 指定資料型態為 8 位元無符號整數,這是圖像資料的一般型態。
  2. cv2.imdecode
    • cv2.imdecode 用來解碼二進位圖像資料。
    • 第一個參數是二進位資料(由 np.fromfile 讀取)。
    • 第二個參數是cv2.IMREAD_COLOR 表示將圖像解碼為彩色圖像。
avatar-img
128會員
209內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
本文將介紹,在圖像中找出最大矩形的物件來定位。
本篇文章主要講述cv2.connectedComponent應用於物件上的分割,將不同文字分割並用不同顏色標記。 範例程式結果圖 cv2.connectedComponentsWithStats 是 OpenCV 中用來執行連通元件標記的函式之一。
針對辨識物的不同,流程就會不一樣,在依照現實狀況進行刪減,以下說明為個人常用的流程。 基本流程: 讀圖 灰階 濾波 (看圖片雜訊多不多) 二值化 連通區域 特徵篩選 特徵資訊 辨識 - (OCR,量測,瑕疵檢測等。) 名詞介紹 Gray 灰階 將原始的彩色圖像轉換為灰階圖
伽瑪校正(Gamma correction)被視為影像增強的一種方法之一。 通過調整 gamma 值,可以改變圖像的亮度和對比度,從而使圖像更清晰或更具有視覺效果。 以下將利用cv2.LUT及numpy的組合實現伽瑪校正,及詳細介紹cv2.LUT 函式應用。
介紹OpenCV中的cv2.matchTemplate和cv2.minMaxLoc函數的使用方法和參數,提供程式範例以及相關特徵匹配的詳細介紹,讓讀者對此有更深入的瞭解。
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
本文將介紹,在圖像中找出最大矩形的物件來定位。
本篇文章主要講述cv2.connectedComponent應用於物件上的分割,將不同文字分割並用不同顏色標記。 範例程式結果圖 cv2.connectedComponentsWithStats 是 OpenCV 中用來執行連通元件標記的函式之一。
針對辨識物的不同,流程就會不一樣,在依照現實狀況進行刪減,以下說明為個人常用的流程。 基本流程: 讀圖 灰階 濾波 (看圖片雜訊多不多) 二值化 連通區域 特徵篩選 特徵資訊 辨識 - (OCR,量測,瑕疵檢測等。) 名詞介紹 Gray 灰階 將原始的彩色圖像轉換為灰階圖
伽瑪校正(Gamma correction)被視為影像增強的一種方法之一。 通過調整 gamma 值,可以改變圖像的亮度和對比度,從而使圖像更清晰或更具有視覺效果。 以下將利用cv2.LUT及numpy的組合實現伽瑪校正,及詳細介紹cv2.LUT 函式應用。
介紹OpenCV中的cv2.matchTemplate和cv2.minMaxLoc函數的使用方法和參數,提供程式範例以及相關特徵匹配的詳細介紹,讓讀者對此有更深入的瞭解。
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
Frames per second簡稱FPS, 也就是每秒幾個幀數的意思, 平常我們看到的影片背後其實都是一張張圖片的組成, 而這一幅畫面就是影片的每一幀。 由於人眼的特殊生理結構, 畫面的幀數只要高於每秒10 - 12張的時候就會認為是連貫的, 這也就是為什麼電影膠片是一格格的拍攝出來, 但是藉
Thumbnail
當我們在進行影像處理時, 在Python的世界最常聽到的就是OpenCV, 而我們在處理影片時也會想要僅針對某時間段的影片進行處理, 今天我們就來教您如何透過OpenCV來讀取特定的時間區段。 在進入主題之前, 有一些基本概念務必先行建立, 一個影片是由多張圖片組成的, 因此最小單元為一張圖
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
繼上次分享的「【🔒 影像辨識 - 影像處理】Ep.1 關於影像的基本單位, 相信我們對於影像的儲存應該有了基本的認識了, 那麼接下來我們會需要的是了解顏色的組成。 我們除了在文章裡講述概念之外, 也會提供實作的數位作品分享給大家, 請大家根據範例學習與練習。 關於顏色 灰階的時代 早期尚未
Thumbnail
歡迎來到「阿Han的軟體心法實戰營 - 影像處理」系列的文章區,我們會針對影像處理的相關知識、開發技巧進行分享,並教你手把手用程式寫出屬於自己的影像處理程式, 當然也會包括AI模型訓練的部分,就讓我們一起來探索影像處理的領域吧! 在進入影像辨識的世界之前, 我們先來了解一下關於解析度的基本概念吧!
Thumbnail
在樹莓派安裝OpenCV的紀錄。板子是樹莓派3B(沒有+),系統raspbian bullseye 32bit灌到USB隨身碟。
Thumbnail
#安裝 OpenCV 相關套件 pip install opencv-python pip install opencv-contrib-python pip install matplotlib
Haar Cascade classifier OpenCV 官方 Github:https://github.com/opencv/opencv/tree/4.x/data 人臉特徵模型:haarcascade_frontalface_default.xml 資料來源: https://steam
opencv is use BGR color matplotlib is use RGB color 顯示圖片 opencv matplotlib
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
Frames per second簡稱FPS, 也就是每秒幾個幀數的意思, 平常我們看到的影片背後其實都是一張張圖片的組成, 而這一幅畫面就是影片的每一幀。 由於人眼的特殊生理結構, 畫面的幀數只要高於每秒10 - 12張的時候就會認為是連貫的, 這也就是為什麼電影膠片是一格格的拍攝出來, 但是藉
Thumbnail
當我們在進行影像處理時, 在Python的世界最常聽到的就是OpenCV, 而我們在處理影片時也會想要僅針對某時間段的影片進行處理, 今天我們就來教您如何透過OpenCV來讀取特定的時間區段。 在進入主題之前, 有一些基本概念務必先行建立, 一個影片是由多張圖片組成的, 因此最小單元為一張圖
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
繼上次分享的「【🔒 影像辨識 - 影像處理】Ep.1 關於影像的基本單位, 相信我們對於影像的儲存應該有了基本的認識了, 那麼接下來我們會需要的是了解顏色的組成。 我們除了在文章裡講述概念之外, 也會提供實作的數位作品分享給大家, 請大家根據範例學習與練習。 關於顏色 灰階的時代 早期尚未
Thumbnail
歡迎來到「阿Han的軟體心法實戰營 - 影像處理」系列的文章區,我們會針對影像處理的相關知識、開發技巧進行分享,並教你手把手用程式寫出屬於自己的影像處理程式, 當然也會包括AI模型訓練的部分,就讓我們一起來探索影像處理的領域吧! 在進入影像辨識的世界之前, 我們先來了解一下關於解析度的基本概念吧!
Thumbnail
在樹莓派安裝OpenCV的紀錄。板子是樹莓派3B(沒有+),系統raspbian bullseye 32bit灌到USB隨身碟。
Thumbnail
#安裝 OpenCV 相關套件 pip install opencv-python pip install opencv-contrib-python pip install matplotlib
Haar Cascade classifier OpenCV 官方 Github:https://github.com/opencv/opencv/tree/4.x/data 人臉特徵模型:haarcascade_frontalface_default.xml 資料來源: https://steam
opencv is use BGR color matplotlib is use RGB color 顯示圖片 opencv matplotlib