[OpenCV基礎][Python]特徵匹配Template Matching

閱讀時間約 4 分鐘

先上結果圖,從圖中有本書被紅框包住。

此結果就是利用OpenCV提供的函式cv2.matchTemplatecv2.minMaxLoc所完成的。


結果圖

結果圖

結果圖


以下程式範例主結構為這兩個函式

cv2.matchTemplate

利用設定的樣本圖,來搜索圖像中相似的特徵物,並回傳一個灰階影像,其中每個像素表示該像素的鄰域與模板的匹配程度。

result = cv2.matchTemplate(image, templ, method[, result[, mask]])

返回值:

result : 匹配結果的圖像,即包含相似度得分的圖像。可選參數。

參數

  • image: 待搜索的圖像,即被搜尋的圖像。
  • templ: 模板圖像,即要在待搜索圖像中尋找的目標。
  • method: 指定匹配的方法。這是一個枚舉值,用來指定計算相似度的方式,例如 cv2.TM_SQDIFFcv2.TM_CCORRcv2.TM_CCOEFF 等。
  • mask: 可選的遮罩圖像,用於指定哪些區域進行匹配。

method個人比較常用以下三種

歸一化後的平方差,數值介於0到1之間,比較直觀好處理。

cv2.TM_CCOEFF_NORMED

正規化相關性係數,且除本身圖像明亮,只保留圖像分佈,分數越相似

cv2.TM_CCORR_NORMED

正規化相關性係數(correlation),分數越相似

cv2.TM_SQDIFF_NORMED

正規化後的平方差,可以適應原始圖像及模板同時提高亮度的狀況,但只有其中之一的圖像光線調整,仍然會產生問題


cv2.minMaxLoc

找到最大/最小值在哪裡。以它為矩形的左上角,(w,h)為矩形的寬度和高度

minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(src[, mask])

返回值:

  • minVal: 圖像中的最小值。
  • maxVal: 圖像中的最大值。
  • minLoc: 最小值的位置,即其 (x, y) 座標。
  • maxLoc: 最大值的位置,即其 (x, y) 座標。

參數:

  • src: 輸入圖像。
  • mask: 可選的遮罩圖像,用於指定要考慮的圖像區域。

程式範例

待搜索的圖像

原圖

原圖

樣本圖

樣本圖

樣本圖

import cv2
import numpy as np

# 讀取圖檔
img = cv2.imread('./org.jpg')
template = cv2.imread('./temp.png')

# 圖像轉換成灰階
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)

# 框取相似圖,需定義好框的大小​,框設定與樣本圖圖片大小一致
h, w = template.shape[:2]

# 指定匹配的方法​
method = cv2.TM_SQDIFF_NORMED

# matchTemplate()傳入待匹配圖像和模板圖像、匹配方法,得到的結果是一個單通道的float32浮點類型的圖像
res = cv2.matchTemplate(img_gray, template_gray, method)

# minMaxLoc()計算最佳匹配位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

# TM_SQDIFF_NORMED, 此方法要取最小值,代表最佳位置
if method in [cv2.TM_CCOEFF_NORMED, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc

#給​rectangle框 右下的位置
bottom_right = (top_left[0] + w, top_left[1] + h)

#框取搜尋到的特徵圖​
cv2.rectangle(img,top_left, bottom_right, (0,0,255), 1)

# 顯示結果圖像
cv2.imshow('reuslt', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

有關特徵匹配更詳細的介紹說明可以參考以下文章

參考文獻




119會員
201內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
使用反三角函數鐘的反正切函數 math.atan2() 計算出兩個座標之間的角度。 實現方法 邊界的最大最小值,相減求得對邊,鄰邊由檢測ROI的寬或高,求得角度 定義旋轉方向性,由邊界最大最小值的座標位子得知,旋轉方向性 程式範例 利用圖中白色物體的上邊界兩個座標點位,算出物體旋轉角度。
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
瞭解二值化影像的應用和程式語法,包括物體檢測和分割、邊緣檢測、圖像分析和測量、文檔辨識,以及使用cv2.threshold的參數和程式範例。
在影像處理中,我們總是想要讓特徵更加明顯一點,可以使用銳利化的方式將特徵的邊緣增強,提升影像的細節,圖像銳利後就會有提升解析度的感覺。 拉普拉斯運算子是一種常用於影像增強的方法之一,特別是用於提高影像的邊緣和細節。 在OpenCV中,你可以使用cv2.Laplacian函數來應用拉普拉斯運算子。
直方圖均衡化處理是一種通過調整圖像的直方圖來改變圖像外觀和質量的圖像處理技術。這通常涉及對圖像的亮度、對比度和顏色分佈進行調整 此方法對於背景和前景均亮或均暗的影像很有用。​並在曝光過度或曝光不足的照片中獲得更好的細節。
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
使用反三角函數鐘的反正切函數 math.atan2() 計算出兩個座標之間的角度。 實現方法 邊界的最大最小值,相減求得對邊,鄰邊由檢測ROI的寬或高,求得角度 定義旋轉方向性,由邊界最大最小值的座標位子得知,旋轉方向性 程式範例 利用圖中白色物體的上邊界兩個座標點位,算出物體旋轉角度。
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
瞭解二值化影像的應用和程式語法,包括物體檢測和分割、邊緣檢測、圖像分析和測量、文檔辨識,以及使用cv2.threshold的參數和程式範例。
在影像處理中,我們總是想要讓特徵更加明顯一點,可以使用銳利化的方式將特徵的邊緣增強,提升影像的細節,圖像銳利後就會有提升解析度的感覺。 拉普拉斯運算子是一種常用於影像增強的方法之一,特別是用於提高影像的邊緣和細節。 在OpenCV中,你可以使用cv2.Laplacian函數來應用拉普拉斯運算子。
直方圖均衡化處理是一種通過調整圖像的直方圖來改變圖像外觀和質量的圖像處理技術。這通常涉及對圖像的亮度、對比度和顏色分佈進行調整 此方法對於背景和前景均亮或均暗的影像很有用。​並在曝光過度或曝光不足的照片中獲得更好的細節。
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
當我們在進行影像處理時, 在Python的世界最常聽到的就是OpenCV, 而我們在處理影片時也會想要僅針對某時間段的影片進行處理, 今天我們就來教您如何透過OpenCV來讀取特定的時間區段。 在進入主題之前, 有一些基本概念務必先行建立, 一個影片是由多張圖片組成的, 因此最小單元為一張圖
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
繼上次分享的「【🔒 影像辨識 - 影像處理】Ep.1 關於影像的基本單位, 相信我們對於影像的儲存應該有了基本的認識了, 那麼接下來我們會需要的是了解顏色的組成。 我們除了在文章裡講述概念之外, 也會提供實作的數位作品分享給大家, 請大家根據範例學習與練習。 關於顏色 灰階的時代 早期尚未
Thumbnail
歡迎來到「阿Han的軟體心法實戰營 - 影像處理」系列的文章區,我們會針對影像處理的相關知識、開發技巧進行分享,並教你手把手用程式寫出屬於自己的影像處理程式, 當然也會包括AI模型訓練的部分,就讓我們一起來探索影像處理的領域吧! 在進入影像辨識的世界之前, 我們先來了解一下關於解析度的基本概念吧!
Thumbnail
在樹莓派安裝OpenCV的紀錄。板子是樹莓派3B(沒有+),系統raspbian bullseye 32bit灌到USB隨身碟。
Thumbnail
#安裝 OpenCV 相關套件 pip install opencv-python pip install opencv-contrib-python pip install matplotlib
Haar Cascade classifier OpenCV 官方 Github:https://github.com/opencv/opencv/tree/4.x/data 人臉特徵模型:haarcascade_frontalface_default.xml 資料來源: https://steam
Thumbnail
OpenCV 讀取圖片 原碼:https://reurl.cc/3354ZL 成果: OpenCV 本身有提供讀取圖檔的函數可用,讀取圖檔,只要呼叫 cv2.imread 即可將圖片讀取進來,以 cv2.imread 讀進來的資料,會儲存成一個 NumPy 的陣列。 將圖片讀取進來之後,可使用 c
opencv is use BGR color matplotlib is use RGB color 顯示圖片 opencv matplotlib
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
當我們在進行影像處理時, 在Python的世界最常聽到的就是OpenCV, 而我們在處理影片時也會想要僅針對某時間段的影片進行處理, 今天我們就來教您如何透過OpenCV來讀取特定的時間區段。 在進入主題之前, 有一些基本概念務必先行建立, 一個影片是由多張圖片組成的, 因此最小單元為一張圖
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
繼上次分享的「【🔒 影像辨識 - 影像處理】Ep.1 關於影像的基本單位, 相信我們對於影像的儲存應該有了基本的認識了, 那麼接下來我們會需要的是了解顏色的組成。 我們除了在文章裡講述概念之外, 也會提供實作的數位作品分享給大家, 請大家根據範例學習與練習。 關於顏色 灰階的時代 早期尚未
Thumbnail
歡迎來到「阿Han的軟體心法實戰營 - 影像處理」系列的文章區,我們會針對影像處理的相關知識、開發技巧進行分享,並教你手把手用程式寫出屬於自己的影像處理程式, 當然也會包括AI模型訓練的部分,就讓我們一起來探索影像處理的領域吧! 在進入影像辨識的世界之前, 我們先來了解一下關於解析度的基本概念吧!
Thumbnail
在樹莓派安裝OpenCV的紀錄。板子是樹莓派3B(沒有+),系統raspbian bullseye 32bit灌到USB隨身碟。
Thumbnail
#安裝 OpenCV 相關套件 pip install opencv-python pip install opencv-contrib-python pip install matplotlib
Haar Cascade classifier OpenCV 官方 Github:https://github.com/opencv/opencv/tree/4.x/data 人臉特徵模型:haarcascade_frontalface_default.xml 資料來源: https://steam
Thumbnail
OpenCV 讀取圖片 原碼:https://reurl.cc/3354ZL 成果: OpenCV 本身有提供讀取圖檔的函數可用,讀取圖檔,只要呼叫 cv2.imread 即可將圖片讀取進來,以 cv2.imread 讀進來的資料,會儲存成一個 NumPy 的陣列。 將圖片讀取進來之後,可使用 c
opencv is use BGR color matplotlib is use RGB color 顯示圖片 opencv matplotlib