「投擲一枚硬幣,若正面朝上,則可得到五千元奬金。」
「投擲一骰子,若猜中所擲出的點數,猜中了,即可得到奬金六萬元。」
「自1-42個數字,選出6組號碼,全部猜中,即可得到頭彩!」
若參加以上任一種遊戲,只要花費五十塊錢,那參加哪種遊戲,可以得到的報酬比較高呢?
投擲一枚硬碟,得到正面的機會,約為1/2,猜骰子猜對的機會,約為1/6….,這些可能會出現的機會比率,就是我們一般所稱的「機率」。機率出現的值,介於0~1之間,若所出現的機率接近1的話,表示該事件發生的機會相當高,若機率接近0的話,則表示事件發生的可能性較低。
計算機率的目地在於提供出一套將不確定的事物予以量化的測度方法。如在上述的例子當中,若我們想要評估花費五十塊錢,投資在哪種機率之下,才能獲取最大的報酬,則我們可以分別將此三種事件的發生機率加以評估,做為選擇投資時的依據。
在對機率此一概念有所暸解之後,接下來,讓我們來看看構成機率的一些簡單名詞及概念。
當我們想要知道,投擲一枚硬幣,會出現正面,還是反面?這個實驗過程,可以稱之為隨機實驗。在隨機實驗中,我們並無法真正的預知會出現何種結果,但卻可以透過長時間的重複實驗得出一些規則。
經由隨機實驗而可能產生的結果,我們可以稱為「事件」,而實驗中所有可能產生的結果的集合,則可稱為「樣本空間」。
就拿投擲硬幣的例子來說,投擲一枚硬幣,會出現正面、反面…各種簡單事件,而正面及反面則為投擲硬幣的樣本空間。
在我們的日常生活中,隨機實驗的例子處處可見,在下表中,即為一些簡單的隨機實驗的例子,可以幫助我們了解實驗、事件及樣本空間三者之間的關係。
假設我們現在想要知道投擲一枚硬幣兩次,兩次都出現正面的機率為多少時,我們可以得出如下圖的結果:
{正、正}
{正、反}
{反、正}
{反、反}
在上面的圖中,您可以看到投擲硬幣二次的樣本空間為{正、正}、{正、反}{反、正}及{反、反},最後我們可以得出投擲兩次硬幣會出現二次正面的機率為1/4。
那假設我們現在想要知道投擲一硬幣十次,全部出現正面之機率為多少時,除了列出所有可能發的事件來計算出可能的機率外,我們還可以利用計數規則(counting rules),求出所要的答案。
所謂「獨立事件」,指的是所發生的事件之間相互獨立,不會相互影響的情況。舉個例子來說,當我們想要知道投擲一骰子三次,每次都出現六點,得到勝利的機率為何時,投擲第一次骰子會得到六點的機率為1/6,在投擲第二次骰子時,得到六點的機率並不會受到前一次投擲骰子的影響,所可能得到的機率亦為1/6,第三次投鄭骰子得到六點的機率,也不會受到前兩次的投擲結果影響,這種情況,我們就可以稱之為「獨立事件」。
當您要求出獨立事件的機率,則可以利用下列的公式,取得獨立事情發生的機率。
kn
在Excel中,要計算出獨立事件的發生機率,相當的簡單,您可以參考下列的範例,求出獨立事件發生的機率。
實做範例:投擲骰子三次都得到最大點數的獲勝機率?
在本範例當中,我們將利用工作表,計算投擲一骰子三次,皆得到六點的機率。
酒醉駕車的肇事機率、工廠中不良品的產生機率….等數值,都是我們在在日常生活中所會關心的問題。然而,利用實驗室裡重覆實驗的觀念,有時候並不適用於某些情況。因此,我們可以藉由建立一個一般的數學模式,正確的計算出我們所感到興趣的各種情況的機率,此類數學模式,一般被我們稱之為「機率分配」。
機率分配,一般都是以隨機抽樣的方式,來求取機率數值。它與次數分配有相當的關聯,但機率分配是以事情發生的機率做為其基礎,而次數分配,則是以事件實際發生的次數為基礎。
使用隨機抽樣所抽出的樣本,可視為一變數,當一隨機變數之所有可能值至多為可數無窮多個時稱之為離散(discrete) 隨機變數(或稱為不連續隨機變數),相反的,當隨機抽取的變數的型態為連續值,其隨機變量是不可數的,我們則稱之為連續隨機變數(continuous variable)。一般在商業用途中,最常利用來計算離散隨機分配的方法包含了二項式分配、超幾何檢定及卜式分配等,而在本節中,我們將為您介紹如何應用Excel計算出這些機率值。
在品管測試實驗中,品管人員抽出十個產品,檢查產品的良品及不良品各為多少;同時服用同一種新藥的10個病患,治癒及未治癒的病患各為多少?一保險員,拜訪10位客戶,成功的有機個,失敗的有幾個?在日常生活中,這種無論抽樣的個數為多少,但實驗的結果都只有兩種可能的結果的實驗,我們稱之為二項隨機實驗。
二項式隨機實驗在每一次實驗只可能產生二種互斥的可能結果,不是成功,即為失敗,成功的機率為P,失敗的機率則為1-P,每次實驗的機率皆相等;而我們令隨機變數X為n次實驗中成功的次數,,則x為二項隨機變數,其機率函數則被稱為二項機率分配。
一般而言,當我們想要計算出二項機率分配時,我們可以利用下列的公式求得結果:
在Excel中,可以使用BINOMDIST函數,求得二項式分配的機率。
BINOMDIST(欲求解的實驗成功次數,為獨立實驗的次數,每一次實驗的成功機率)
在對二項式分配有概念之後,接下來,讓我們來看看在如何應用binomdist函數來求得製造燈泡的工廠中,不良率產品的產生機率。
燈泡工廠以往抽樣的結果,生產的燈泡為不良品的機率約為12%,現在抽出100個製造完成的成品,其中抽到10個不良品的機率為多少?
1.在工作表的儲存格「C4」、「C5」、「C6」及「C7」中分別輸入欄位名稱「實驗成功的次數(抽到不良品的個數)」、「獨立實驗的次數」、「每次實驗的成功率(即產生不良品的機率)」「100個成品中抽到10個不良品的機率」等文字。之後,再分別在儲存格「D4」填入「10」,表示要計計算抽到10個不良品的機率值;在「D5」填入「100」,表示抽出「100」個製造完成的成品;最後,再在實驗項目中填入產生不良品的機率為「12%」。
2.使用滑鼠選取儲存格「D7」,並選取功能表中的「Formula,Statistic、選取「BINOMDIST」函數。
3.在Number_s欄位中填入儲存格「D4」代表抽到10個不良品;Trials填入「D5」,表示進行實驗的次數為100;Probability_s填入「D6」表示產生不良品的機率為12%,最後在Cumulative欄位中輸入「False」表示採用機率函數密度分配的邏輯值,最後按下「確定」鍵,即可得到計算結果「0.108033336」的數值。
二項式分配的期望值,即指成功次數的平均數。變異數,如前面章節中所敘述,指的是平均數週圍的散佈值,我們可以透過下面的公式求得此二者的數值。
二項分配的期望值
E(X)=np
二分配的變異數
V(X)=npq
承接上面燈泡工廠生產產品會抽中不良產品的例子,我們可以運用Excel做出下面的計算。
操作實例:燈泡工廠不良產品生產的期望值與變異數計算
在本例中,我們將使用二項式分配定理之公式計算出燈泡工廠抽取100個樣本時,抽中不良品的期望值及變異數。
在「D5」儲存格中填入「+D5*D6*(1-D6)」,計算出變異數。
最後,把游標停放在「D6」儲存格中,並且填入開平方的公式「=SQRT(D10)」,即可得實驗中抽出不良品的標準差。
除了計算工廠所生產的產品的不良品發生的機率外,期望值的亦被廣泛的應用在日常生活中。如參加一賭局所會贏得的彩金,或者是做為保險公司評估保險費時的計算標準。
在參加旅遊時,旅行社會規定每位遊客都必須參加意外險,每位旅客必須投保的金額為$1,000,假設每次旅遊會發生意外事故的機率為0.005,則平均的保費應為多少?
在這個範例中,我們則可以看出,保險公司在收取某一項產品的保費時,所會用到的計算方式。不過,在一般的情況下,保險公司跟保戶所收取的費用將不只於上述期望值所計算出的結果;通常會將一些其它的成本也轉嫁到保戶身上。
超幾何檢定也是一種常用來計算不連續機率分配的一種計算機率的方法。它主要的特性為組成母體的元素是有限的,並且可被分為兩種不同特質的分類。
假設目前我們有N個母體元素,而這些元素可以被分為K及N-K等兩類,現在,我們自母體隨機抽取n個,抽出即不放回。我們令K為成功,則抽取到N-K類者,即為失敗。我們指定X為抽取n次中所得到的成功次數,則X為超幾何隨機變數,其機率函數則稱為超幾何分配。
在Excel中,我們可以使用HYPGEOMDIST()函數,求得超幾何實驗的結果。HYPGEOMDIST函數的語法如下:
HYPGEOMDIST(抽樣中成功的數量,樣本個數,母群體中成功的個數,母群體的大小)
接下來,讓我們用HYPGEOMDIST()超幾何分配函數來計算燈泡工廠產品抽驗的實際的例子。
燈泡工廠以往抽樣的結果,20個燈泡中,有8個燈泡不會亮,有12個燈泡會亮。現在工廠要出貨,抽出4個成品,剛好有一個是不會亮的燈泡的機率為多少?
使用滑鼠選取儲存格「D8」,並選取功能表中的「Formula,Statistic選擇「HYPGEOMDIST」。
.在Sample_s欄位中填入儲存格「D3」代表抽到1個不亮的燈泡;Number_sample「D4」,表示所抽取的樣本數為4,Population_s填入「D5」,表示自母群體中抽到不亮燈泡的個數,最後在Number_pop欄位中輸入「D6」,表示母群體的個數。在分別的指定所有的參數欄位後,最後按下「確定」鍵,即可得到計算結果。
當您要求出二項式分配的期望值,變異數時,我們可以透過下面的公式求得此二者的數值。
E(X)=n×
V(X)=n× × ×
承接上面的燈泡工廠所生產的燈泡例子,則自4個成品中抽到不亮的燈泡的平均數為:
E(X)=n× =4× =1.6
變異數即為:
V(X)=n× × × =4× × × =0.2021