[OpenCV基礎][Python]遮罩,旋轉,輪廓應用濾除斑點

更新於 發佈於 閱讀時間約 14 分鐘

[影像處理_OpenCV Python]使用Python撰寫影像處理功能,圖片遮罩或濾除掉不要的地方,旋轉圖片

前言

以下範例將呈現影像處理三種不同的應用:

遮罩的實現

利用cv2.add用法來實現mask,黑色的像素0則會遮蔽掉呈現黑色,白色像素255則會透明的方式顯現出原圖的樣子

濾除不要的斑點(白點)

利用 cv2.findContours用法來實現mask,黑色的像素0則會遮蔽掉呈現黑色,白色像素255則會透明的方式顯現出原圖的樣子

旋轉圖片

利用cv2.warpAffinecv2.getRotationMatrix2D實現圖片旋轉

結果圖

raw-image
raw-image
raw-image

程式碼範例及連結


程式範例說明

遮罩的實現

import cv2
import numpy as np
import matplotlib.pyplot as plt
'''
遮罩的實現
利用cv2.add用法來實現mask,黑色的像素0則會遮蔽掉呈現黑色,白色像素255則會透明的方式顯現出原圖的樣子
'''
# 建立300*300的白色圖像
img1 = cv2.imread('./images.jpg')
img2 = np.zeros((224, 224), dtype=np.uint8)
# 在第二張圖像上繪製一個白色圓形
cv2.circle(img2, (112, 112), 70, 255, thickness=cv2.FILLED)

# 將利用遮罩的方式取出想要的畫面
# 將彩色圖片轉換為灰度圖
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

# 將灰度圖作為遮罩,進行相加
result = cv2.add(img1_gray, img1_gray, mask = img2)

# 將結果轉換回彩色圖
result_colored = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2BGR)
# 顯示原始圖片和結果
plt.subplot(1, 3, 1), plt.imshow(img1), plt.title('Image 1'), plt.axis('off')
plt.subplot(1, 3, 2), plt.imshow(img2), plt.title('Image 2'), plt.axis('off')
plt.subplot(1, 3, 3), plt.imshow(result_colored), plt.title('Result with Mask'), plt.axis('off')
plt.show()
  1. import cv2import numpy as npimport matplotlib.pyplot as plt:引入OpenCV、NumPy和Matplotlib庫,這些庫用於處理圖像和顯示結果。
  2. img1 = cv2.imread('./images.jpg'):讀取一張名為"images.jpg"的圖片,存儲在img1中。
  3. img2 = np.zeros((224, 224), dtype=np.uint8):創建一張大小為224x224的黑色圖片,存儲在img2中,後面將用於遮罩用。
  4. cv2.circle(img2, (112, 112), 70, 255, thickness=cv2.FILLED):在img2上畫一個白色的圓形,中心座標為(112, 112),半徑為70,顏色為255全白色,並且使用cv2.FILLED參數填充整個圓形內部。
  5. img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY):將彩色圖片img1轉換為灰度圖,存儲在img1_gray中。
  6. result = cv2.add(img1_gray, img1_gray, mask=img2):利用cv2.add將兩張灰度圖相加,其中img2的白色部分將透明顯示原圖,黑色部分則被遮罩掉。
  7. result_colored = cv2.cvtColor(result, cv2.COLOR_BGR2RGB):將最終的結果轉換回彩色圖,以便在Matplotlib中顯示。
  8. img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2BGR):將img2轉換回彩色圖,以便在Matplotlib中顯示。
  9. Matplotlib的部分:使用plt.subplotplt.imshow來顯示原始圖片、遮罩圖片和最終帶有遮罩效果的結果圖片。最後使用plt.show()顯示整體結果。

濾除不要的斑點(白點)

import cv2
import numpy as np
import matplotlib.pyplot as plt

'''
濾除不想要的斑點(白點)
cv2.findContours 主要用於找尋物體的輪廓,通常在二值圖像(黑白圖像)中找尋物體的邊界。黑白圖像中的白色區域視為物體,黑色區域視為背景,findContours 會找尋物體和背景之間的邊界
'''
def filter_contours_by_area(img:np.ndarray,min_area_threshold):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 找到輪廓
contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
#找出最大最小輪廓方便設定
max_contour = max(contours, key=cv2.contourArea)
max_area = cv2.contourArea(max_contour)
min_contour = min(contours, key=cv2.contourArea)
min_area = cv2.contourArea(min_contour)
print(f'max_area:{max_area}')
print(f'min_area:{min_area}')
# 過濾輪廓,將面積小於 min_area_threshold 的輪廓區域設為背景值(0)
for contour in contours:
area = cv2.contourArea(contour)
if area < min_area_threshold:
cv2.drawContours(img, [contour], -1, 0, thickness=cv2.FILLED) #將白點 轉換成黑色
return img
#導入圖片
img1 = cv2.imread('./particle.jpg')
print(f'img1:{img1.shape}')
min_area_threshold = 1000 #設定想濾除的面積
#呼叫filter_contours_by_area函數
result_img = filter_contours_by_area(img1,min_area_threshold)

#因opencv導入圖片為BGR,PLT顯示圖片需要轉換成RGB
result_colored = cv2.cvtColor(result_img, cv2.COLOR_GRAY2BGR)
result_colored = cv2.cvtColor(result_colored, cv2.COLOR_BGR2RGB)

# 顯示原始圖片和結果
plt.subplot(1, 2, 1), plt.imshow(img1), plt.title('Image 1'), plt.axis('off')
plt.subplot(1, 2, 2), plt.imshow(result_colored), plt.title('result_img'), plt.axis('off')
plt.show()

def filter_contours_by_area(img:np.ndarray, min_area_threshold)::定義了一個函數,接受一張圖片img和最小面積閾值min_area_threshold作為參數。

contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE):使用cv2.findContours找到圖片中的所有輪廓。這個函數返回輪廓的列表contours

max_contour = max(contours, key=cv2.contourArea)

min_contour = min(contours, key=cv2.contourArea):找到面積最大和最小的輪廓。

print(f'max_area:{max_area}')print(f'min_area:{min_area}'):印出最大和最小輪廓的面積,方便等下設定濾除面積的基準參考值。

for contour in contours::遍歷所有輪廓。

area = cv2.contourArea(contour):計算當前輪廓的面積。

if area < min_area_threshold::如果面積小於指定的最小面積閾值,則將此輪廓的區域設為背景值(0),即將白點轉換為黑色。

cv2.drawContours(img, [contour], -1, 0, thickness=cv2.FILLED)

result_img = filter_contours_by_area(img1, min_area_threshold):呼叫函數,將圖片img1濾除面積小於min_area_threshold的白點,得到result_img

result_colored = cv2.cvtColor(result_img, cv2.COLOR_GRAY2BGR)

result_colored = cv2.cvtColor(result_colored, cv2.COLOR_BGR2RGB)

將結果圖轉換為彩色圖,因為Matplotlib與OPENCV色域不同,OPENCV為BGR的關係。

旋轉圖片

import cv2
import numpy as np
import matplotlib.pyplot as plt

def rotate_image(image, angle):
# 取得影像中心點坐標
center = tuple(np.array(image.shape[1::-1]) / 2)
# 設定旋轉矩陣
rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)
# 進行影像旋轉
rotated_image = cv2.warpAffine(image, rotation_matrix, image.shape[1::-1], flags=cv2.INTER_LINEAR)
return rotated_image

img1 = cv2.imread('./images.jpg')

result_img = rotate_image(img1,90)

#因opencv導入圖片為BGR,PLT顯示圖片需要轉換成RGB
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
result_colored = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)

# 顯示原始圖片和結果
plt.subplot(1, 2, 1), plt.imshow(img1), plt.title('Image 1'), plt.axis('off')
plt.subplot(1, 2, 2), plt.imshow(result_colored), plt.title('result_img'), plt.axis('off')
plt.show()
  1. def rotate_image(image, angle)::定義了一個函數,用於旋轉圖片。接受一張圖片image和旋轉角度angle作為參數。
  2. center = tuple(np.array(image.shape[1::-1]) / 2):取得圖片的中心點坐標。
  3. rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0):使用cv2.getRotationMatrix2D來獲得旋轉矩陣,其中center是旋轉的中心點,angle是旋轉的角度,1.0是縮放因子。
  4. rotated_image = cv2.warpAffine(image, rotation_matrix, image.shape[1::-1], flags=cv2.INTER_LINEAR):使用cv2.warpAffine進行影像旋轉,flags=cv2.INTER_LINEAR表示使用線性插值。

謝謝大家觀看,若喜歡在麻煩動動小手給點愛心 感謝:)





留言
avatar-img
留言分享你的想法!
螃蟹_crab-avatar-img
發文者
2024/09/12
[OpenCV][Python]利用連通域分析來過濾雜點提及了這篇文章,趕快過去看看吧!
螃蟹_crab-avatar-img
發文者
2024/01/29
螃蟹_crab-avatar-img
發文者
2024/01/18
[OpenCV應用][Python]斑點檢測blob detect提及了這篇文章,趕快過去看看吧!
螃蟹_crab-avatar-img
發文者
2024/01/15
avatar-img
螃蟹_crab的沙龍
143會員
253內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
螃蟹_crab的沙龍的其他內容
2025/02/15
在電腦視覺應用中,輪廓(Contour)常用來描述物體的邊界。 當圖像中有雜訊或物體邊緣過於複雜時,我們可以利用輪廓逼近技術,將輪廓簡化成較少點數的多邊形,這不僅有助於後續的形狀分析,也能提高處理速度。 本文將介紹如何使用 OpenCV 中的 cv2.arcLength 與 cv2.approx
Thumbnail
2025/02/15
在電腦視覺應用中,輪廓(Contour)常用來描述物體的邊界。 當圖像中有雜訊或物體邊緣過於複雜時,我們可以利用輪廓逼近技術,將輪廓簡化成較少點數的多邊形,這不僅有助於後續的形狀分析,也能提高處理速度。 本文將介紹如何使用 OpenCV 中的 cv2.arcLength 與 cv2.approx
Thumbnail
2024/12/02
中值濾波器(Adaptive Median Filter)是一種針對噪聲去除的圖像處理技術,主要應用於處理含有椒鹽雜訊的圖像,但在椒鹽雜訊過大時就會面臨,若為了處理掉雜訊,使用的處理窗口(kernel)就要大一點,會造成圖像的邊緣模糊掉。 後面為解決這個問題,就發展了自適應中值濾波器,其概念源自於
Thumbnail
2024/12/02
中值濾波器(Adaptive Median Filter)是一種針對噪聲去除的圖像處理技術,主要應用於處理含有椒鹽雜訊的圖像,但在椒鹽雜訊過大時就會面臨,若為了處理掉雜訊,使用的處理窗口(kernel)就要大一點,會造成圖像的邊緣模糊掉。 後面為解決這個問題,就發展了自適應中值濾波器,其概念源自於
Thumbnail
2024/10/03
在影像處理中,形態學操作是非常重要的一種技術,能夠幫助我們去除噪點、強化特徵、修復物體的形狀等。形態學操作的核心是「結構元素」(kernel),不同形狀的結構元素會產生不同的處理效果。本文將介紹如何使用不同形狀的結構元素來進行圖像處理,並結合實際程式範例和測試圖片來說明其效果。
Thumbnail
2024/10/03
在影像處理中,形態學操作是非常重要的一種技術,能夠幫助我們去除噪點、強化特徵、修復物體的形狀等。形態學操作的核心是「結構元素」(kernel),不同形狀的結構元素會產生不同的處理效果。本文將介紹如何使用不同形狀的結構元素來進行圖像處理,並結合實際程式範例和測試圖片來說明其效果。
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
本文將說明如何去辨識出圖片文字​位置及高寬。
Thumbnail
本文將說明如何去辨識出圖片文字​位置及高寬。
Thumbnail
在影像處理中,有時候我們只想特別關注某個感興趣的區域時,就是ROI的概念,擷取此範圍的圖像來做處理。 設定超過圖像邊界時就會報錯,本文主要介紹如何擷取影像的同時,避免設定錯誤造成程式崩潰的狀況。 擷取圖像示意圖 ROI程式範例 import cv2 import numpy as np
Thumbnail
在影像處理中,有時候我們只想特別關注某個感興趣的區域時,就是ROI的概念,擷取此範圍的圖像來做處理。 設定超過圖像邊界時就會報錯,本文主要介紹如何擷取影像的同時,避免設定錯誤造成程式崩潰的狀況。 擷取圖像示意圖 ROI程式範例 import cv2 import numpy as np
Thumbnail
常見的圖像銳利化方法: 銳化濾波器 增強對比度 Unsharp Masking
Thumbnail
常見的圖像銳利化方法: 銳化濾波器 增強對比度 Unsharp Masking
Thumbnail
上一篇提到利用cv2.inRangex,建立遮罩來過濾出紅球。這次我們稍微更動一下程式碼,將紅球變顏色。 [OpenCV][Python]利用cv2.inRange搭配cv2.bitwise_and過濾紅球 結果圖 將紅球改變顏色成藍球
Thumbnail
上一篇提到利用cv2.inRangex,建立遮罩來過濾出紅球。這次我們稍微更動一下程式碼,將紅球變顏色。 [OpenCV][Python]利用cv2.inRange搭配cv2.bitwise_and過濾紅球 結果圖 將紅球改變顏色成藍球
Thumbnail
涉及圖像處理和計算機視覺時,色彩空間轉換是一個常見操作,應用如下: 降維: 將一張彩色圖像轉換為灰度圖像可以減少數據的維度,簡化處理過程,同時在某些情況下保留重要的視覺信息。 突顯特徵: 在某些情況下,某些色彩通道可能包含冗餘或不必要的信息,通過轉換到其他色彩空間,可以更好地突顯圖像中的重要特徵
Thumbnail
涉及圖像處理和計算機視覺時,色彩空間轉換是一個常見操作,應用如下: 降維: 將一張彩色圖像轉換為灰度圖像可以減少數據的維度,簡化處理過程,同時在某些情況下保留重要的視覺信息。 突顯特徵: 在某些情況下,某些色彩通道可能包含冗餘或不必要的信息,通過轉換到其他色彩空間,可以更好地突顯圖像中的重要特徵
Thumbnail
形態學操作在影像處理中有多種應用,特別是在處理二值化影像(黑白影像)。 在影像處理應用上,基本上都由侵蝕,膨脹這兩種方法,組合搭配而成。 常見應用場景 物體檢測與分割: 形態學操作可以用於增強或改善二值化影像中的物體邊界,使得物體的檢測和分割更加準確。
Thumbnail
形態學操作在影像處理中有多種應用,特別是在處理二值化影像(黑白影像)。 在影像處理應用上,基本上都由侵蝕,膨脹這兩種方法,組合搭配而成。 常見應用場景 物體檢測與分割: 形態學操作可以用於增強或改善二值化影像中的物體邊界,使得物體的檢測和分割更加準確。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News