Cross-Entropy

更新 發佈閱讀 1 分鐘

交叉熵(Cross-Entropy)是一種用於評估模型預測與真實標籤之間差異的損失函數,常見於分類任務。

其核心是衡量預測分佈與目標分佈的相似程度,數值越小代表預測越準確。

當模型的預測與真實標籤完全不符 , y hat趨近 0 時 ,log(y hat) 會趨近負無窮,導致交叉熵損失非常大。

因此,最大值取決於預測錯誤的程度和樣本數量。交叉熵適合用於多分類問題,能有效懲罰錯誤預測,幫助模型快速收斂。 適合用在 AI、機器學習等領域的關鍵技術! 🌟 


raw-image


留言
avatar-img
留言分享你的想法!
avatar-img
Princend的沙龍
0會員
34內容數
Princend的沙龍的其他內容
2025/01/26
這本書旨在幫助創作者分享他們的過程並與受眾建立聯繫,而非僅僅是推銷自己。 ## 第一章:你不需要是個天才 * **創造力不只是天賦,而是一種運作方式** 。 * 不要相信「孤獨的天才」神話,偉大的作品往往來自於一個互相支持、彼此學習的「群體」(**scenius**)
Thumbnail
2025/01/26
這本書旨在幫助創作者分享他們的過程並與受眾建立聯繫,而非僅僅是推銷自己。 ## 第一章:你不需要是個天才 * **創造力不只是天賦,而是一種運作方式** 。 * 不要相信「孤獨的天才」神話,偉大的作品往往來自於一個互相支持、彼此學習的「群體」(**scenius**)
Thumbnail
2024/12/31
今年嘗試往不同領域去學習 甚至裸辭參加AI職訓班 雖然成長的幅度沒有想像的那麼好 但是至少是有成長的 期待未來的我 能夠持續學習 達到心中所想的目標
Thumbnail
2024/12/31
今年嘗試往不同領域去學習 甚至裸辭參加AI職訓班 雖然成長的幅度沒有想像的那麼好 但是至少是有成長的 期待未來的我 能夠持續學習 達到心中所想的目標
Thumbnail
2024/12/25
馬可夫鍊(Markov Chain) 是一種數學模型,用來描述一個系統在不同狀態之間的轉移過程,特點是未來的狀態只取決於當前狀態,而與過去的狀態無關。這種性質稱為馬可夫性質,即「無記憶性」。馬可夫鍊常用於統計學、機器學習、經濟學、生物學等領域。
Thumbnail
2024/12/25
馬可夫鍊(Markov Chain) 是一種數學模型,用來描述一個系統在不同狀態之間的轉移過程,特點是未來的狀態只取決於當前狀態,而與過去的狀態無關。這種性質稱為馬可夫性質,即「無記憶性」。馬可夫鍊常用於統計學、機器學習、經濟學、生物學等領域。
Thumbnail
看更多
你可能也想看
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
交叉熵(Cross-Entropy)是一種用於評估模型預測與真實標籤之間差異的損失函數,常見於分類任務。 其核心是衡量預測分佈與目標分佈的相似程度,數值越小代表預測越準確。 當模型的預測與真實標籤完全不符 , y hat趨近 0 時 ,log(y hat) 會趨近負無窮,導致交叉熵損失非常大。
Thumbnail
交叉熵(Cross-Entropy)是一種用於評估模型預測與真實標籤之間差異的損失函數,常見於分類任務。 其核心是衡量預測分佈與目標分佈的相似程度,數值越小代表預測越準確。 當模型的預測與真實標籤完全不符 , y hat趨近 0 時 ,log(y hat) 會趨近負無窮,導致交叉熵損失非常大。
Thumbnail
CFA和SEM分析的擬合指標通常需要達到專家門檻,才可以進行分析。我整理知名統計學者Hair的建議,並附上相關文獻佐證,讓讀者能正確地進行模型修正,讓適配指標過關。
Thumbnail
CFA和SEM分析的擬合指標通常需要達到專家門檻,才可以進行分析。我整理知名統計學者Hair的建議,並附上相關文獻佐證,讓讀者能正確地進行模型修正,讓適配指標過關。
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
Thumbnail
潛在類別模式(latent class modeling, LCM)和潛在剖面分析(Latent Profile Analysis, LPA)是探討潛在類別變項的統計技術。兩者與因素分析最大的不同在於潛在變項(因素)的形式。本文將介紹潛在類別/剖面/混合分析操作1:找出最佳組數
Thumbnail
如同跨組比較一樣,跨時間時也需要考量縱向測量衡等性,在分析縱向數據時考慮 測量衡等性 很重要,因為不具有縱向測量衡等性的量表,對結果的有效性和正確性有所影響。縱向衡等性和多群組衡等性的分析策略相似,但在參數設定有些差異,本文將簡介其概念和和Mplus操作。
Thumbnail
如同跨組比較一樣,跨時間時也需要考量縱向測量衡等性,在分析縱向數據時考慮 測量衡等性 很重要,因為不具有縱向測量衡等性的量表,對結果的有效性和正確性有所影響。縱向衡等性和多群組衡等性的分析策略相似,但在參數設定有些差異,本文將簡介其概念和和Mplus操作。
Thumbnail
「共變異數分析 (ANCOVA)」程序會比較一個連續應變數在兩個以上因素變數之間的平均數,並判定共變量的效應以及共變量與因素之間的交互作用。可以在控制共變數分析,可以調查因素之間的交互作用、以及主要效果。ANCOVA通常用於研究中,研究者希望控制控制變項探的情況下,檢驗一個或多個自變量對依變項。
Thumbnail
「共變異數分析 (ANCOVA)」程序會比較一個連續應變數在兩個以上因素變數之間的平均數,並判定共變量的效應以及共變量與因素之間的交互作用。可以在控制共變數分析,可以調查因素之間的交互作用、以及主要效果。ANCOVA通常用於研究中,研究者希望控制控制變項探的情況下,檢驗一個或多個自變量對依變項。
Thumbnail
公差分析對於一個機構工程師來說,是不可或缺的一項專業技能。雖然在業界中使用的公差分析軟件、或是公差分析的Excel函數計算,最重要的是路徑(critical path)的觀念,加上基本的六個標準差概念,就可以預估結構設計在未來生產上的不良率是多少,通常不良率是以”百萬分之”(DPMO)來表達。
Thumbnail
公差分析對於一個機構工程師來說,是不可或缺的一項專業技能。雖然在業界中使用的公差分析軟件、或是公差分析的Excel函數計算,最重要的是路徑(critical path)的觀念,加上基本的六個標準差概念,就可以預估結構設計在未來生產上的不良率是多少,通常不良率是以”百萬分之”(DPMO)來表達。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News