AutoEncoder

更新於 發佈於 閱讀時間約 1 分鐘

Autoencoder 是一種無監督學習的神經網絡,分為編碼器(將數據壓縮為隱藏表示)和解碼器(將隱藏表示重建為原始數據)。其目標是最小化輸入和重建數據之間的誤差,廣泛應用於數據降維、特徵提取、去噪和生成模型(如變分自編碼器 VAE)。優點包括無需標籤學習和自動學習特徵,但也容易過擬合,需要大量數據和計算資源。

raw-image




留言
avatar-img
留言分享你的想法!
avatar-img
Princend的沙龍
0會員
34內容數
Princend的沙龍的其他內容
2025/01/26
這本書旨在幫助創作者分享他們的過程並與受眾建立聯繫,而非僅僅是推銷自己。 ## 第一章:你不需要是個天才 * **創造力不只是天賦,而是一種運作方式** 。 * 不要相信「孤獨的天才」神話,偉大的作品往往來自於一個互相支持、彼此學習的「群體」(**scenius**)
Thumbnail
2025/01/26
這本書旨在幫助創作者分享他們的過程並與受眾建立聯繫,而非僅僅是推銷自己。 ## 第一章:你不需要是個天才 * **創造力不只是天賦,而是一種運作方式** 。 * 不要相信「孤獨的天才」神話,偉大的作品往往來自於一個互相支持、彼此學習的「群體」(**scenius**)
Thumbnail
2024/12/31
今年嘗試往不同領域去學習 甚至裸辭參加AI職訓班 雖然成長的幅度沒有想像的那麼好 但是至少是有成長的 期待未來的我 能夠持續學習 達到心中所想的目標
Thumbnail
2024/12/31
今年嘗試往不同領域去學習 甚至裸辭參加AI職訓班 雖然成長的幅度沒有想像的那麼好 但是至少是有成長的 期待未來的我 能夠持續學習 達到心中所想的目標
Thumbnail
2024/12/25
馬可夫鍊(Markov Chain) 是一種數學模型,用來描述一個系統在不同狀態之間的轉移過程,特點是未來的狀態只取決於當前狀態,而與過去的狀態無關。這種性質稱為馬可夫性質,即「無記憶性」。馬可夫鍊常用於統計學、機器學習、經濟學、生物學等領域。
Thumbnail
2024/12/25
馬可夫鍊(Markov Chain) 是一種數學模型,用來描述一個系統在不同狀態之間的轉移過程,特點是未來的狀態只取決於當前狀態,而與過去的狀態無關。這種性質稱為馬可夫性質,即「無記憶性」。馬可夫鍊常用於統計學、機器學習、經濟學、生物學等領域。
Thumbnail
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
MAGI-1 是由 SandAI 開發的先進自回歸視頻生成模型,旨在通過自回歸方式預測視頻塊序列來生成高質量視頻。該模型經過訓練,能夠對視頻塊進行去噪,實現因果時間建模並支持流式生成。MAGI-1 在圖像到視頻(I2V)任務中表現卓越,提供高時間一致性與可擴展性,這得益於多項算法創新與專門的基礎設施
Thumbnail
MAGI-1 是由 SandAI 開發的先進自回歸視頻生成模型,旨在通過自回歸方式預測視頻塊序列來生成高質量視頻。該模型經過訓練,能夠對視頻塊進行去噪,實現因果時間建模並支持流式生成。MAGI-1 在圖像到視頻(I2V)任務中表現卓越,提供高時間一致性與可擴展性,這得益於多項算法創新與專門的基礎設施
Thumbnail
本章節將介紹解碼器的對偶電路 —— 編碼器(Encoder)。 透過本章學習,你將了解編碼器的邏輯運作原理與實務應用情境,並具備設計與分析編碼器電路的能力。
Thumbnail
本章節將介紹解碼器的對偶電路 —— 編碼器(Encoder)。 透過本章學習,你將了解編碼器的邏輯運作原理與實務應用情境,並具備設計與分析編碼器電路的能力。
Thumbnail
本章節將介紹常見數位邏輯模組中的關鍵元件之一 —— 解碼器(Decoder)。 透過本章的學習,你將掌握解碼器的邏輯結構、功能實現與實務應用,並能靈活運用於各類數位設計場景中。
Thumbnail
本章節將介紹常見數位邏輯模組中的關鍵元件之一 —— 解碼器(Decoder)。 透過本章的學習,你將掌握解碼器的邏輯結構、功能實現與實務應用,並能靈活運用於各類數位設計場景中。
Thumbnail
這篇文章提供機器學習和人工智慧的基礎概念,包含監督式學習、非監督式學習、強化學習,以及模型訓練、優化和評估等重要環節。文中也涵蓋了特徵工程、特徵縮放、維度詛咒等關鍵概念,並簡要介紹了正規化、K折交叉驗證等進階技術。
Thumbnail
這篇文章提供機器學習和人工智慧的基礎概念,包含監督式學習、非監督式學習、強化學習,以及模型訓練、優化和評估等重要環節。文中也涵蓋了特徵工程、特徵縮放、維度詛咒等關鍵概念,並簡要介紹了正規化、K折交叉驗證等進階技術。
Thumbnail
Naive Bayes是一種基於貝葉斯定理的機器學習分類演算法,適用於文本分類、垃圾郵件檢測及情感分析等任務。雖然假設特徵之間相互獨立,這在現實中不常成立,但其高效計算與穩定性使得在小數據集及高維度特徵空間中表現良好。
Thumbnail
Naive Bayes是一種基於貝葉斯定理的機器學習分類演算法,適用於文本分類、垃圾郵件檢測及情感分析等任務。雖然假設特徵之間相互獨立,這在現實中不常成立,但其高效計算與穩定性使得在小數據集及高維度特徵空間中表現良好。
Thumbnail
Autoencoder 是一種無監督學習的神經網絡,分為編碼器(將數據壓縮為隱藏表示)和解碼器(將隱藏表示重建為原始數據)。其目標是最小化輸入和重建數據之間的誤差,廣泛應用於數據降維、特徵提取、去噪和生成模型(如變分自編碼器 VAE)。優點包括無需標籤學習和自動學習特徵,但也容易過擬合,需要大量數據
Thumbnail
Autoencoder 是一種無監督學習的神經網絡,分為編碼器(將數據壓縮為隱藏表示)和解碼器(將隱藏表示重建為原始數據)。其目標是最小化輸入和重建數據之間的誤差,廣泛應用於數據降維、特徵提取、去噪和生成模型(如變分自編碼器 VAE)。優點包括無需標籤學習和自動學習特徵,但也容易過擬合,需要大量數據
Thumbnail
輸入層:接收數據,對應特徵值,是網絡的入口。 隱藏層:學習數據的抽象特徵,引入非線性,處理複雜模式。 輸出層:產生結果,將特徵轉換為預測值(regression)或分類(classification)結果。 陳縕儂老師說過 中間的隱藏層通常不會是線性的 如果全部都是線性 那任意交換隱藏層
Thumbnail
輸入層:接收數據,對應特徵值,是網絡的入口。 隱藏層:學習數據的抽象特徵,引入非線性,處理複雜模式。 輸出層:產生結果,將特徵轉換為預測值(regression)或分類(classification)結果。 陳縕儂老師說過 中間的隱藏層通常不會是線性的 如果全部都是線性 那任意交換隱藏層
Thumbnail
不需要去解析AI,就如同解析人類的腦袋一樣不重要! 分析大腦中,哪個部份是負責什麼任務,或許對於心理學或是腦神經科學有所幫助。但是如果要去解析AI的參數中,哪些參數是影響什麼,那就如同去研究腦細胞中,哪些是決定當下講出這一句話的哪一個文字一般,那麼的不重要… 決定一件事,並不是由一個細胞完成的,如果
Thumbnail
不需要去解析AI,就如同解析人類的腦袋一樣不重要! 分析大腦中,哪個部份是負責什麼任務,或許對於心理學或是腦神經科學有所幫助。但是如果要去解析AI的參數中,哪些參數是影響什麼,那就如同去研究腦細胞中,哪些是決定當下講出這一句話的哪一個文字一般,那麼的不重要… 決定一件事,並不是由一個細胞完成的,如果
Thumbnail
這篇文章能帶你的收穫將超乎你的想像,除了可以避免你或你所在的公司浪費無數時間、金錢在一些沒有意義的事情上面虛耗(譬如調參數、重新訓練,採用錯誤的機器學習方法或架構),也可以讓你或你的公司在獲得相關知識之後,能更正確的理解當前的環境與制定出更好的市場戰略。LSTM技術的致命缺陷也在此顯現出來!
Thumbnail
這篇文章能帶你的收穫將超乎你的想像,除了可以避免你或你所在的公司浪費無數時間、金錢在一些沒有意義的事情上面虛耗(譬如調參數、重新訓練,採用錯誤的機器學習方法或架構),也可以讓你或你的公司在獲得相關知識之後,能更正確的理解當前的環境與制定出更好的市場戰略。LSTM技術的致命缺陷也在此顯現出來!
Thumbnail
在影像生成的領域中,其中一個富有挑戰的是影像對影像的轉譯問題。該問題包括了 paired 和 unpaired 兩個子問題。在本文中,會先提 paired 問題的 pix2pix。unpaired 的問題則會談到 cross consistency, Normalization 和 attentio
Thumbnail
在影像生成的領域中,其中一個富有挑戰的是影像對影像的轉譯問題。該問題包括了 paired 和 unpaired 兩個子問題。在本文中,會先提 paired 問題的 pix2pix。unpaired 的問題則會談到 cross consistency, Normalization 和 attentio
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News