AutoEncoder

閱讀時間約 1 分鐘

Autoencoder 是一種無監督學習的神經網絡,分為編碼器(將數據壓縮為隱藏表示)和解碼器(將隱藏表示重建為原始數據)。其目標是最小化輸入和重建數據之間的誤差,廣泛應用於數據降維、特徵提取、去噪和生成模型(如變分自編碼器 VAE)。優點包括無需標籤學習和自動學習特徵,但也容易過擬合,需要大量數據和計算資源。

raw-image




avatar-img
0會員
33內容數
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Princend的沙龍 的其他內容
池化層透過降維操作(如最大池化、平均池化)壓縮特徵圖,減少計算量,保留關鍵資訊,同時提升模型對位置和變形的穩健性,是CNN中加速運算的重要部分!
卷積層是CNN的核心,透過卷積核提取局部特徵,如邊緣、紋理等。每個卷積核學習不同的特徵,輸出稱為特徵圖。它透過局部連接和參數共享,減少計算量,提升效率,是圖像分析的關鍵!
卷積神經網路(CNN)是一種深度學習模型,擅長處理圖像數據。透過卷積層提取特徵,池化層降維,並結合全連接層進行分類或預測。其特點包括參數共享、空間不變性,適用於圖像分類、目標檢測等多種任務。經典模型有LeNet、AlexNet、VGG、ResNet等。簡單高效,廣泛應用於AI領域。
Dropout 是防止過擬合的正則化技術,訓練時隨機將部分輸入單元設為 0,並對未丟棄的輸入放大為 1/(1−rate),以保持總輸出不變。推論(inference)期間則不丟棄值。
Batch Normalization 是一種提升深度學習模型訓練效率的技術,透過正規化每層輸入的數據分佈,加速收斂並提升模型穩定性。 1.加速模型訓練,支持更高學習率。 2.減少過擬合,有輕微正則化效果。 3.減輕參數初始化的依賴,增強模型穩健性。 4.適用於全連接層與卷積層等多種結構
Underfitting(欠擬合) 可能原因: 模型選擇過於簡單,表現力不足(如線性模型處理高度非線性問題)。 模型表現不足,無法捕捉數據中的模式或規律。 通常是因為模型過於簡單(如使用太少的參數或低容量模型)或訓練時間不足。 Overfitting(過擬合) 可能原因:
池化層透過降維操作(如最大池化、平均池化)壓縮特徵圖,減少計算量,保留關鍵資訊,同時提升模型對位置和變形的穩健性,是CNN中加速運算的重要部分!
卷積層是CNN的核心,透過卷積核提取局部特徵,如邊緣、紋理等。每個卷積核學習不同的特徵,輸出稱為特徵圖。它透過局部連接和參數共享,減少計算量,提升效率,是圖像分析的關鍵!
卷積神經網路(CNN)是一種深度學習模型,擅長處理圖像數據。透過卷積層提取特徵,池化層降維,並結合全連接層進行分類或預測。其特點包括參數共享、空間不變性,適用於圖像分類、目標檢測等多種任務。經典模型有LeNet、AlexNet、VGG、ResNet等。簡單高效,廣泛應用於AI領域。
Dropout 是防止過擬合的正則化技術,訓練時隨機將部分輸入單元設為 0,並對未丟棄的輸入放大為 1/(1−rate),以保持總輸出不變。推論(inference)期間則不丟棄值。
Batch Normalization 是一種提升深度學習模型訓練效率的技術,透過正規化每層輸入的數據分佈,加速收斂並提升模型穩定性。 1.加速模型訓練,支持更高學習率。 2.減少過擬合,有輕微正則化效果。 3.減輕參數初始化的依賴,增強模型穩健性。 4.適用於全連接層與卷積層等多種結構
Underfitting(欠擬合) 可能原因: 模型選擇過於簡單,表現力不足(如線性模型處理高度非線性問題)。 模型表現不足,無法捕捉數據中的模式或規律。 通常是因為模型過於簡單(如使用太少的參數或低容量模型)或訓練時間不足。 Overfitting(過擬合) 可能原因:
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
一、AI传感器? AI传感器是将人工智能技术与传统传感器技术相结合的产物,旨在提高传感器的数据处理能力、准确性和智能化水平。这些传感器能够通过内置的算法和学习能力,对收集到的数据进行分析和处理,从而实现更加智能的决策和响应。 从我搜索到的资料中可以看出,AI传感器的发展经历了从基础的人工智能应用
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
Thumbnail
AIGC,全名是人工智能生成內容(AI-generated content),指的是使用人工智能技術自動生成的各種數字內容。這些內容可以包括文本、圖像、音樂、視頻、程式碼等等。AIGC利用自然語言處理(NLP)、計算機視覺、機器學習和深度學習等技術來創建和生成這些內容。
AI與虛擬帳號的盛行,帶來了機會與風險,需要保持警覺與理性,避免被迷惑與控制,以及辨別訊息真假,是每個網路使用者該思考與學習的。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
AI 是人工智能 (Artificial Intelligence) 的縮寫。它指一種模擬、模仿人類智能的技術與系統。主要使機器能夠執行需要人類智慧才能完成的任務。應用於各領域,包括自動駕駛車輛、語音助手、推薦系統、金融分析、醫學診斷、工業自動化等。不僅可提高效率和準確性,還可解決複雜的問題和挑戰。
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
一、AI传感器? AI传感器是将人工智能技术与传统传感器技术相结合的产物,旨在提高传感器的数据处理能力、准确性和智能化水平。这些传感器能够通过内置的算法和学习能力,对收集到的数据进行分析和处理,从而实现更加智能的决策和响应。 从我搜索到的资料中可以看出,AI传感器的发展经历了从基础的人工智能应用
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
Thumbnail
AIGC,全名是人工智能生成內容(AI-generated content),指的是使用人工智能技術自動生成的各種數字內容。這些內容可以包括文本、圖像、音樂、視頻、程式碼等等。AIGC利用自然語言處理(NLP)、計算機視覺、機器學習和深度學習等技術來創建和生成這些內容。
AI與虛擬帳號的盛行,帶來了機會與風險,需要保持警覺與理性,避免被迷惑與控制,以及辨別訊息真假,是每個網路使用者該思考與學習的。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
數位化時代中,人工智能(AI)已成為推動創新和進步的關鍵力量。本文探討AI的現狀、挑戰以及未來可能性,並提出負責任地發展和使用AI的思考。
Thumbnail
AI 是人工智能 (Artificial Intelligence) 的縮寫。它指一種模擬、模仿人類智能的技術與系統。主要使機器能夠執行需要人類智慧才能完成的任務。應用於各領域,包括自動駕駛車輛、語音助手、推薦系統、金融分析、醫學診斷、工業自動化等。不僅可提高效率和準確性,還可解決複雜的問題和挑戰。