LoRA(Low-Rank Adaptation)

更新於 發佈於 閱讀時間約 2 分鐘

LoRA(Low-Rank Adaptation)是一種高效的微調技術,設計用於快速適應大型預訓練模型(如GPT、BERT、T5)以完成特定任務,同時大幅減少需要調整的參數數量。它通過在模型的權重矩陣中引入低秩(low-rank)分解,僅學習少量可訓練參數,避免完整微調帶來的龐大計算和記憶體消耗。

LoRA的核心原理:

將模型中某個大權重矩陣 的更新表示為兩個低秩矩陣 和 的乘積: 。

保持原始預訓練模型權重凍結不變,只訓練這兩個低秩矩陣,完成調整。

這樣能減少需要訓練的參數數量,同時保有原模型知識,支持快速且資源節省的微調。

主要優點:

參數效率:僅調整極少數參數,節約記憶體和計算成本。

保留預訓練知識:模型主體權重不變,降低微調風險且易於回退到原模型。

易整合:可用於各種 Transformer 類大型模型,且不增加推理延遲。

訓練速度快:大大縮短微調時間,適合少量數據或快速迭代。

應用場景:

自然語言處理(NLP)中的領域適應或特定任務微調。

計算機視覺模型輕量級微調。

個性化模型定制以及多任務模型共享。

簡單比喻:

LoRA 就像是在原本龐大的機器內部加裝了一個小巧精緻的調節器,通過調整這個調節器達到改變整體功能的效果,而不需重新打造整個機器。

總結:

LoRA 是一種低秩矩陣分解的高效微調方法,通過少量參數調整完成大模型快速、節省成本的任務定制,已成為大型神經網絡微調的流行技術。

留言
avatar-img
留言分享你的想法!
avatar-img
郝信華 iPAS AI應用規劃師 學習筆記
17會員
455內容數
現職 : 富邦建設資訊副理 證照:經濟部 iPAS AI應用規劃師 AWS Certified AI Practitioner (AIF-C01)
2025/08/18
Textual Inversion 是一種用於個性化文字到圖像生成模型(如 Stable Diffusion)的技術。它允許用戶通過少量示例圖片(通常3-5張),讓模型學會一個新的「詞彙」或「概念」,這個詞彙對應於用戶提供的特定對象、風格或人物。 主要原理: • 傳統的文字到圖像模型使用預訓練
2025/08/18
Textual Inversion 是一種用於個性化文字到圖像生成模型(如 Stable Diffusion)的技術。它允許用戶通過少量示例圖片(通常3-5張),讓模型學會一個新的「詞彙」或「概念」,這個詞彙對應於用戶提供的特定對象、風格或人物。 主要原理: • 傳統的文字到圖像模型使用預訓練
2025/08/18
Emergent Abilities(突現能力)指的是在大型人工智慧模型(特別是大型語言模型)中,隨著模型規模、資料量和計算能力的增加,模型突然顯現出未被明確設計或訓練的全新技能或行為。這些能力不是模型明確被編程或預訓練的,而是隨著系統的複雜度提升自發出現,帶有某種不可預測性。 主要特點: •
2025/08/18
Emergent Abilities(突現能力)指的是在大型人工智慧模型(特別是大型語言模型)中,隨著模型規模、資料量和計算能力的增加,模型突然顯現出未被明確設計或訓練的全新技能或行為。這些能力不是模型明確被編程或預訓練的,而是隨著系統的複雜度提升自發出現,帶有某種不可預測性。 主要特點: •
2025/08/18
FID(Fréchet Inception Distance)是一種用來評估生成式模型(如GAN或擴散模型)所產生圖像品質的指標。其核心目標是比較生成圖像與真實圖像的分布差異,以量化生成圖像的真實性和多樣性。 FID 的工作原理 • 使用預訓練的 Inception-v3 網路提取生成圖像和真
2025/08/18
FID(Fréchet Inception Distance)是一種用來評估生成式模型(如GAN或擴散模型)所產生圖像品質的指標。其核心目標是比較生成圖像與真實圖像的分布差異,以量化生成圖像的真實性和多樣性。 FID 的工作原理 • 使用預訓練的 Inception-v3 網路提取生成圖像和真
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 中的 Attention 機制是 'Word-to-Word' 操作,抑或是 'Token-to-Token' 操作,白話來講就是:「對於句子中
Thumbnail
試著去訓練 LoRA 幾次後,發現一些有趣的問題... ㄜ~技術問題後面再說好了,先分享最近訓練的 LoRA YunQiuWaterColor ​一個類似水彩畫風的 LoRA。 以下來欣賞幾張圖片吧!
Thumbnail
試著去訓練 LoRA 幾次後,發現一些有趣的問題... ㄜ~技術問題後面再說好了,先分享最近訓練的 LoRA YunQiuWaterColor ​一個類似水彩畫風的 LoRA。 以下來欣賞幾張圖片吧!
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News