自然語言處理

含有「自然語言處理」共 37 篇內容
全部內容
發佈日期由新至舊
Liquid AI,一家從麻省理工學院衍生的創新公司,正開發一種全新的AI模型,以「第一原理」為基礎,突破傳統GPT框架的限制。這些模型強調因果關係、可解釋性以及環境永續性,目標是提高AI的效率與透明度,特別適用於特定領域與通用系統。Liquid AI 並有望成為未來 AI 發展的新標竿。
Thumbnail
本文探討生成式 AI 與自然語言處理 (NLP) 的關係,強調兩者如何相互影響並共同推動人工智能的發展。生成式 AI 能夠通過學習大量數據生成文本、音樂和圖像,而 NLP 則幫助機器理解和產生人類語言。本文還介紹了生成式 AI 的多種應用,包括機器翻譯、文本摘要和對話系統,並展望未來技術的創新潛能。
Thumbnail
PyTorch 是一個開源的 Python 機器學習庫,基於 Torch 庫,底層由 C++ 實現,應用於人工智慧領域,如電腦視覺和自然語言處理等。 PyTorch 2.4 引入了多項新功能和改進,包括支援 Python 3.12、AOTInductor 凍結功能、新的高階 Python 自訂運算
Thumbnail
人工智慧是什麼? 人工智慧(Artificial Intelligence, AI) 簡單來說,就是讓機器模仿人類的思考、學習和決策的能力。它就像是一個聰明的電腦程序,可以執行許多原本需要人類智慧才能完成的工作,例如: 語音辨識: 讓電腦聽懂人類的語言,像是 Siri、Google As
Thumbnail
機器其實不是像人類這樣一的單字對應一個單字去翻譯, 而是使用「編碼器 Encoder」與「解碼器 Decoder」來做語言之間的翻譯。 其中編碼器的任務,是「閱讀 Read」與「處理 Process」完整的文本, 而解碼器的任務,則是「產生 Produced」翻譯過後的文本。
本文介紹了流行的Python套件NLTK(Natural Language Toolkit)的主要特點、功能和在中文和英文語料上的應用。從安裝到實際應用,深入介紹了分詞、停用詞去除、詞性標註、命名實體識別等NLP任務的具體實現和步驟,幫助讀者理解和應用NLTK。
Thumbnail
大家在跟Chat GPT互動的時候,會不會覺得常常雞同鴨講 我們梳理了一些提升Chat GPT回答能力的作法 ChatGPT回答不是你要的怎麼辦? 我們也實作了當中的一種方法,叫做RAG於 自己做免錢Chat GPT吧 這篇文章,我們談談其他技巧,稱為「透過LoRA執行Fine Tuning」
大家在跟Chat GPT互動的時候,會不會覺得常常雞同鴨講 我們梳理了一些提升Chat GPT回答能力的作法 ChatGPT回答不是你要的怎麼辦? 我們也實作了當中的一種方法,叫做RAG於 自己做免錢Chat GPT吧 這篇文章,我們談談其他技巧,稱為Prompt Engineering
請問可以舉個例子怎麼寫是會改進的嗎? 或是有模版嗎?
回顧我們的目標是自己做一個免錢Chat GPT 自己做免錢Chat GPT吧 當中,我希望外掛一個外部知識庫,叫做RAG,來提升整體問答的品質,同時又能避免機敏資訊被Chat GPT竊取。 緣由參見 ChatGPT回答不是你要的怎麼辦? 詳細實作於 使用Meta釋出的模型,實作Chat G
人工智慧中最受歡迎的作法莫過於類神經網路,以當今最受歡迎的大型語言模型 (LLM)也不例外,然而這些持續受到爭議:黑盒子,也就是說我們不知道它內部怎麼運作,只知道給它一段話,它就會輸出一段話來回應。 以下從幾個面向來討論「黑盒子」議題: 透明性 Transparency 以LLM模型的開