DP動態規劃 深入淺出 以Unique Path 路徑總數 為例_精選75題

更新於 發佈於 閱讀時間約 7 分鐘
raw-image

如同這個Dynamic programming 深入淺出系列的開始,在經過比較簡單的入門題(Coin Change)之後,來看比較進階的二維DP題目Unique Path

學而時習之不亦樂乎,再次強調DP的解題框架,鞏固知識點。

Dynamic programming本質是透過遞迴關係式,去解決一個大規模的問題,而這個大規模的問題又可以被分解為較小規模的子問題,而且子問題往往彼此重複

Dynamic programming的解題框架可分為三大步驟

1.定義狀態 [我在哪裡]

2. 定義狀態轉移關係式(通則) [我從哪裡來] => [答案從哪裡推導而來]

3. 釐清初始狀態(也可以說是遞迴的終止條件) [第一步怎麼走,怎麼出發的]


題目敘述

詳細的題目可在這裡看到 Unique Paths


題目給定我們一個棋盤的高與寬,起點固定在左上角終點固定在右下角

每一步只能選擇往右走一格,或者往下走一格,不能回頭。

要求我們求出從起點到終點有幾條路徑


對應的解題影片,搭配服用,效果更佳。


測試範例

Example 1:

raw-image
Input: m = 3, n = 7
Output: 28

Example 2:

Input: m = 3, n = 2
Output: 3
Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Down -> Down
2. Down -> Down -> Right
3. Down -> Right -> Down

老樣子,先走過一遍解題框架可分為三大步驟,藉此鞏固解題基礎。

1.定義DP狀態 [我在哪裡]

通常遇到這種棋盤式或者帶有點座標的題目,定義一個二維狀態的DP是一種很常見且直觀的選擇。

這裡,我們可以定義DP[x, y] 為從起點(0,0)到座標(x,y)的路徑數目(方法數)。

那麼,最後我們要計算的就是DP[終點x座標, 終點y座標] = DP[ n-1, m-1]


2.推導DP狀態轉移關係式(通則)
[我從哪裡來] => [答案從哪裡推導而來]

不難發現,除了最上面的那一條row,和最左的那一條column之外,

中間的點座標都有兩種選擇(往右或往下),反過來說,

中間的點座標可以從上面走過來,或者從左邊走過來。

raw-image

所以,推廣到一般化的通式,對點座標(x, y)而言

DP[ x, y]

= 從起點左上角(0, 0)到點座標(x, y)的方法數

= 從起點左上角(0, 0)到點座標(x-1, y)的方法數 + 從起點左上角(0, 0)到點座標(x, y-1)的方法數

= DP[x-1, y] + DP[x, y-1]


3. 釐清DP初始狀態(終止條件)
[第一步怎麼走,怎麼出發的]

有幾個情況是初始條件,或稱為遞迴的終止條件。

點座標為(0, 0)起點時,顯然,方法只有一種

DP(0, 0) = 1

另外,當點座標為最上方那條橫排時(x, 0),方法也只有一種(因為只能從左邊走過來,沒有別的方法)

DP[x, 0] = 1

同理,當點座標為最左邊那條直排時(0, y)方法也只有一種(因為只能從上面走下來,沒有別的方法)

DP[0, y] = 1


到這裡,已經填滿解題框架的所有內容,接著我們把它轉成程式碼,

這裡以Python作為示範


Top down DP程式碼

class Solution:
 def uniquePaths(self, m: int, n: int) -> int:
  
  # -----------------------------------
  
  # key: (m, n) size of grid
  # value: total path count from source to destinaion
  memo = {}
  
  def path_count(x, y):
   
   if (x, y) in memo:
    
    # look-up in memo
    return memo[(x, y)]
   
   if (x == 0) or (y == 0):
    
    # base case (starting point) and
    # special cases (top-most row as well as left-most column)
    memo[(m, n)] = 1
    return 1

   # general case
   memo[(x, y)] = path_count(x-1, y) + path_count(x, y-1)
   return memo[(x, y)]
 
  # -----------------------------------
  return path_count(x=n-1, y=m-1)

複雜度分析

時間複雜度: O( m * n )

O( m * n ),板子上的每個格子點都拜訪一次。

空間複雜度: O( m * n )

O( m * n ),板子上總共有O(m * n)個格子點,也是DP table的大小。


Bottom up DP程式碼

class Solution:
 def uniquePaths(self, m: int, n: int) -> int:
  
  rows, cols = m, n
  
  path_dp = [ [ 1 for j in range(cols)] for i in range(rows) ]
  
  
  # Dynamic Programming relation:
  
  # Base case:
  # DP(0, j) = 1 , only reachable from one step left
  # DP(i, 0) = 1 , only reachable from one step up
  
  # General case:
  # DP(i,j) = number of path reach to (i, j)
  #   = number of path reach to one step left + number of path reach to one step up
  #   = number of path reach to (i, j-1) + number of path to (i-1, j)
  #   = DP(i, j-1) + DP(i-1, j)
  
  
  
  for i in range(1, rows):
   for j in range(1, cols):
    
    path_dp[i][j] = path_dp[i][j-1] + path_dp[i-1][j]
  
  
  # Destination coordination = (rows-1, cols-1)
  return path_dp[rows-1][cols-1]

複雜度分析

時間複雜度: O( m * n )

O( m * n ),板子上的每個格子點都拜訪一次,對應到雙層迴圈內部的計算。

空間複雜度: O( m * n )

O( m * n ),板子上總共有O(m * n)個格子點,也是DP table的大小。


Reference

[1] Python/JS/Java/Go/C++by O( mn ) DP [ With explanation ]

留言
avatar-img
留言分享你的想法!
小松鼠-avatar-img
發文者
2024/06/07
DP特訓班目錄 與 推薦的DP學習路徑 (持續更新中)提及了這篇文章,趕快過去看看吧!
小松鼠-avatar-img
發文者
2024/06/01
avatar-img
小松鼠的演算法樂園
95會員
427內容數
由有業界實戰經驗的演算法工程師, 手把手教你建立解題的框架, 一步步寫出高效、清晰易懂的解題答案。 著重在讓讀者啟發思考、理解演算法,熟悉常見的演算法模板。 深入淺出地介紹題目背後所使用的演算法意義,融會貫通演算法與資料結構的應用。 在幾個經典的題目融入一道題目的多種解法,或者同一招解不同的題目,擴展廣度,並加深印象。
2024/09/13
給定一個整數陣列arr,和一串區間XOR請求queries。 請計算queries所請求的區間XOR值,並且以陣列的形式返回答案。
Thumbnail
2024/09/13
給定一個整數陣列arr,和一串區間XOR請求queries。 請計算queries所請求的區間XOR值,並且以陣列的形式返回答案。
Thumbnail
2024/08/27
Path with Maximum Probability 題目給定一個無向圖(雙向移動皆可), 提供每條邊的起終點,和每條邊對應的通過時的成功機率。 請問從起點start走到終點end的最高成功機率是多少? 如果完全沒有路徑可以抵達,則返回0。
Thumbnail
2024/08/27
Path with Maximum Probability 題目給定一個無向圖(雙向移動皆可), 提供每條邊的起終點,和每條邊對應的通過時的成功機率。 請問從起點start走到終點end的最高成功機率是多少? 如果完全沒有路徑可以抵達,則返回0。
Thumbnail
2024/08/21
題目敘述 664. Strange Printer 有一台奇怪的印表機, 每次操作只能連續印同樣的字母,但是列印的長度可以自由控制。 而且,印刷的時候,可以蓋過去舊的字元。 (這邊當然不合常理,讀者可以理解成塗了立可帶再蓋過去的情境) 給定一個輸入字串s,請問最少需要幾次操作,才能印出字串s?
Thumbnail
2024/08/21
題目敘述 664. Strange Printer 有一台奇怪的印表機, 每次操作只能連續印同樣的字母,但是列印的長度可以自由控制。 而且,印刷的時候,可以蓋過去舊的字元。 (這邊當然不合常理,讀者可以理解成塗了立可帶再蓋過去的情境) 給定一個輸入字串s,請問最少需要幾次操作,才能印出字串s?
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
Minimum Path Sum 給定一個矩陣,每個格子點代表經過的對應成本。 每回合可以往右移動一格或往下移動一格。 請問從起點左上角 走到 終點右下角的最小路徑成本總和是多少?
Thumbnail
Minimum Path Sum 給定一個矩陣,每個格子點代表經過的對應成本。 每回合可以往右移動一格或往下移動一格。 請問從起點左上角 走到 終點右下角的最小路徑成本總和是多少?
Thumbnail
Leetcode 精選75題 題目與題解 熱門考點 目錄 (持續更新中) 建議從左側目錄 或者 按Ctrl+F輸入關鍵字進行搜尋
Thumbnail
Leetcode 精選75題 題目與題解 熱門考點 目錄 (持續更新中) 建議從左側目錄 或者 按Ctrl+F輸入關鍵字進行搜尋
Thumbnail
探討如何使用DP動態規劃的方法來進行單字串接,包含了DP遞迴關係式、狀態定義、優化技巧和程式碼示例。同時分析了時間複雜度、空間複雜度和關鍵知識點。這是LeetCode的一個應用題,類似於Word Break I的延伸。
Thumbnail
探討如何使用DP動態規劃的方法來進行單字串接,包含了DP遞迴關係式、狀態定義、優化技巧和程式碼示例。同時分析了時間複雜度、空間複雜度和關鍵知識點。這是LeetCode的一個應用題,類似於Word Break I的延伸。
Thumbnail
這篇文章,會帶大家快速回顧DFS+回溯法框架(還沒看過或想複習的可以點連結進去)。 用DFS+回溯法框架,解開 直線排列Permutations 的全系列題目。 幫助讀者鞏固DFS+回溯法框架這個重要的知識點。 回顧 DFS+回溯法框架 白話的意思 # 列舉所有可能的情況,遞迴展開所有分
Thumbnail
這篇文章,會帶大家快速回顧DFS+回溯法框架(還沒看過或想複習的可以點連結進去)。 用DFS+回溯法框架,解開 直線排列Permutations 的全系列題目。 幫助讀者鞏固DFS+回溯法框架這個重要的知識點。 回顧 DFS+回溯法框架 白話的意思 # 列舉所有可能的情況,遞迴展開所有分
Thumbnail
題目敘述 輸入給定一個鏈結串列,整體看代表一個十進位的數字,各別看每個節點代表每個digit,分別從最高位~最低位個位數。 要求我們把原本的數字乘以二,並且以鏈結串列的形式返回答案。 原本的英文題目敘述
Thumbnail
題目敘述 輸入給定一個鏈結串列,整體看代表一個十進位的數字,各別看每個節點代表每個digit,分別從最高位~最低位個位數。 要求我們把原本的數字乘以二,並且以鏈結串列的形式返回答案。 原本的英文題目敘述
Thumbnail
這篇文章,會帶著大家複習以前學過的數列DP框架, 並且以費式數列、爬樓梯、骨牌拚接的應用與遞迴數列概念為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 數列DP與遞迴數列常見的形式 如果是遞迴數列,常常看到以函數型式表達
Thumbnail
這篇文章,會帶著大家複習以前學過的數列DP框架, 並且以費式數列、爬樓梯、骨牌拚接的應用與遞迴數列概念為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 數列DP與遞迴數列常見的形式 如果是遞迴數列,常常看到以函數型式表達
Thumbnail
這篇文章,會帶著大家複習以前學過的格子點DP框架, 並且以移動路徑Unique Path的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 格子點DP框架 依循題目的定義和規則,找出格子點移動的共同模式。 以本篇文章的例題為例,每一步可以選擇往右走一個
Thumbnail
這篇文章,會帶著大家複習以前學過的格子點DP框架, 並且以移動路徑Unique Path的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 格子點DP框架 依循題目的定義和規則,找出格子點移動的共同模式。 以本篇文章的例題為例,每一步可以選擇往右走一個
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News