avatar-img

DP動態規劃 特訓班

17公開內容
55私密內容

以Leetcode國際版官方精選DP動態規劃測驗題為大綱

以獨門的 DP三段式框架 和 化簡技巧 為輔

幫助讀者徹底理解DP的思想與意義

熟練DP框架與常見的DP演算法模板

以明確的DP演算法推演框架

協助讀者從理解題意開始,建立演算法,寫出Python程式碼。

幫助讀者擺脫遇到一題硬背一題解答的困境!

全部內容
免費與付費
最新發佈優先
付費限定
題目敘述 Triangle 題目會給我們一個三角形的二維陣列triangle ,每個元素分別代表每個格子的成本,請問我們從最頂端到底部的下墜路徑的最小成本總和是多少? 每次下墜到下一排的時候,可以有兩種選擇: 1.往左下方的格子點移動。 2.往右下方的格子點移動。 測試範例 Examp
Thumbnail
🥪🥞☕️準備早餐~
付費限定
Minimum Path Sum 給定一個矩陣,每個格子點代表經過的對應成本。 每回合可以往右移動一格或往下移動一格。 請問從起點左上角 走到 終點右下角的最小路徑成本總和是多少?
Thumbnail
😵😵😵還是來吃東西好了🥗🍣🍸
DP特訓班的分類目錄 與 推薦的學習、練習順序
Thumbnail
六月六日祝您~~~~
付費限定
給定一個二維的二元矩陣,計算正方形的最大面積。利用DP演算法及最大化正方形邊長的方法,遍歷矩陣,釐清DP初始狀態並推導出DP狀態轉移關係式。複雜度分析說明了時間複雜度和空間複雜度。關鍵知識點是找出最大的正方形邊長。
Thumbnail
😁😁😁只能乾笑
動態規劃Dynamic Programming其實是 一種泛用的演算法思考方式與演算法建構框架。 動態規劃並不拘束於只能解課本上特定的的範例題。 只要我們能找出DP狀態定義、DP遞迴結構、初始條件(終止條件),就能適用動態規劃來解題,以數學的形式表達,並且在紙筆上或者電腦上、計算機上計算
Thumbnail
就不用一直手動計算了🥹
這篇文章,會帶著大家複習以前學過的 格子點DP框架, 並且以最小成本的下降路徑的應用題與概念為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 最小成本下降路徑的形式 每個格子點的值代表經過的成本。 要求從最上面那排往下方走,落到最下一排的最小成本的下降路徑。
Thumbnail
付費限定
這篇文章,會帶著大家複習以前學過的格子點DP框架, 並且以移動路徑Unique Path的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 格子點DP框架 依循題目的定義和規則,找出格子點移動的共同模式。 以本篇文章的例題為例,每一步可以選擇往右走一個
Thumbnail
這篇文章,會帶著大家複習以前學過的前綴和框架, 並且以區間和的概念與應用為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 前綴和 prefix sum框架 與 區間和計算的關係式 接下來,我們會用這個上面這種框架,貫穿一些同類型,有關聯的題目 (請讀者、或觀眾
Thumbnail
題目敘述 題目會給定一個指定高度和寬的方格版,還有一顆小球的起始位置,和最大移動步數。 小球每一步可以選擇向上、下、左、右移動一格,請問小球能走到方格版界外的路徑方法數總共有幾種? 方法數可能很大,題目要求,最後回傳答案時,先對10^9+7做除法取餘數再回傳。 題目的原文敘述 約束條件
Thumbnail
付費限定
題目敘述 題目會給我們一個二維陣列matrix,分別代表每個格子的成本,請問我們從最頂端到底部的下墜路徑的最小成本總和是多少? 每次下墜到下一排的時候,可以有三種選擇: 1.往左下角移動。 2.往正下方移動。 3.往右下角移動。 題目的原文敘述 測試範例 Example 1:
Thumbnail