[深度學習][Python]DCGAN訓練生成手寫阿拉伯數字_生成篇

更新於 發佈於 閱讀時間約 3 分鐘

呈上篇介紹如何訓練模型,此篇就主要介紹如何利用訓練好的模型來生成圖片


[深度學習][Python]DCGAN訓練生成手寫阿拉伯數字_訓練篇


生成的結果

生成的圖片大小會根據,當初設置的生成器輸出大小來決定,當你使用生成對抗網絡(GAN)生成圖像時,生成器模型的最後一層通常會決定生成圖像的大小和通道數。


Python及套件版本

Python version: 3.11.3
NumPy version: 1.24.2
Matplotlib version: 3.7.1
tensorflow version: 2.13.0

程式碼

  • 載入模型: 使用 load_model 函數從指定的路徑載入預訓練的生成模型(GAN 模型)。
  • 生成雜訊向量: 使用 tf.random.normal 生成隨機雜訊向量。
  • 生成圖像: 通過生成模型(generator)來生成圖像。
  • 顯示圖像: 使用 plot_multiple_images 函數顯示生成的圖像。
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from keras.models import load_model

# 繪製生成圖像用
def plot_multiple_images (images, n=None):

if images.shape [-1] == 1:
images = np. squeeze (images, axis=-1)
plt.figure(figsize=(n, 2))

for i in range(n):
plt.subplot(2, int(n/2), i + 1)
plt. imshow (images [i], cmap="binary")
plt.axis ("off")
plt.show ()

# 載入模型
generator = load_model('載入模型')

noise_dim = 100 # 雜訊向量大小
num_examples_to_generate = 16 # 生成筆數

# 產生亂數(雜訊)
seed = tf.random.normal([num_examples_to_generate, noise_dim])
# 生成圖片
generated_images = generator (seed)
# 顯示圖片​
plot_multiple_images (generated_images, 10)


生成器輸出大小

  1. 模型設計: 生成器模型的設計會決定輸出的圖像大小。例如,如果你的生成器模型的最後一層使用了 Conv2D 層,則該層的輸出大小會決定生成的圖像的大小。
  2. 維度調整: 在生成圖像之前,確保生成器的輸出形狀符合你的期望。例如,如果生成器輸出的圖像大小是 64x64 像素,那麼你應該在顯示這些圖像時使用 64x64 的維度進行重塑。





留言
avatar-img
留言分享你的想法!
avatar-img
螃蟹_crab的沙龍
149會員
293內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。 興趣是攝影,踏青,探索未知領域。 人生就是不斷的挑戰及自我認清,希望老了躺在床上不會後悔自己什麼都沒做。
螃蟹_crab的沙龍的其他內容
2024/07/27
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
2024/07/27
本文參考TensorFlow官網Deep Convolutional Generative Adversarial Network的程式碼來加以實作說明。 示範如何使用深度卷積生成對抗網路(DCGAN) 生成手寫數位影像。
Thumbnail
2024/07/26
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
2024/07/26
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
2024/07/26
延續上一篇訓練GAM模型,這次我們讓神經網路更多層更複雜一點,來看訓練生成的圖片是否效果會更好。 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 資料集分割處理的部分在延續上篇文章,從第五點開始後修改即可,前面都一樣 訓練過程,比較圖 是不是CNN的效果比MLP還要好,
Thumbnail
2024/07/26
延續上一篇訓練GAM模型,這次我們讓神經網路更多層更複雜一點,來看訓練生成的圖片是否效果會更好。 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 資料集分割處理的部分在延續上篇文章,從第五點開始後修改即可,前面都一樣 訓練過程,比較圖 是不是CNN的效果比MLP還要好,
Thumbnail
看更多
你可能也想看
Thumbnail
AI生成圖片是一個挑戰性的任務,雖然AI能理解文字需求,但仍無法完全想像心中的理想畫面。使用中文描述AI的生成效果約為5成到6成,而加入擬人化的描述可以讓AI更好地理解需求。無論如何,AI生成圖片仍面臨許多挑戰,需要更多的研究與嘗試。
Thumbnail
AI生成圖片是一個挑戰性的任務,雖然AI能理解文字需求,但仍無法完全想像心中的理想畫面。使用中文描述AI的生成效果約為5成到6成,而加入擬人化的描述可以讓AI更好地理解需求。無論如何,AI生成圖片仍面臨許多挑戰,需要更多的研究與嘗試。
Thumbnail
這是一篇介紹如何使用AI來生成貓貓圖片的文章,作者透過幾個軟體的使用經驗,分享了AI生成圖片的效果以及注意事項。文章內容豐富,並且有各種關鍵字和描述,可以吸引潛在讀者。
Thumbnail
這是一篇介紹如何使用AI來生成貓貓圖片的文章,作者透過幾個軟體的使用經驗,分享了AI生成圖片的效果以及注意事項。文章內容豐富,並且有各種關鍵字和描述,可以吸引潛在讀者。
Thumbnail
呈上篇介紹如何訓練模型,此篇就主要介紹如何利用訓練好的模型來生成圖片 [深度學習][Python]DCGAN訓練生成手寫阿拉伯數字_生成篇 生成的結果 生成的圖片大小會根據,當初設置的生成器輸出大小來決定,當你使用生成對抗網絡(GAN)生成圖像時,生成器模型的最後一層通常會決定生成圖
Thumbnail
呈上篇介紹如何訓練模型,此篇就主要介紹如何利用訓練好的模型來生成圖片 [深度學習][Python]DCGAN訓練生成手寫阿拉伯數字_生成篇 生成的結果 生成的圖片大小會根據,當初設置的生成器輸出大小來決定,當你使用生成對抗網絡(GAN)生成圖像時,生成器模型的最後一層通常會決定生成圖
Thumbnail
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
生成式AI(Generative AI)能夠創造新內容和想法,包括對話、故事、圖像、視訊和音樂等。本文將介紹幾種生成式AI模型,以及其在設計製造、教育、客戶服務、媒體與娛樂、市場營銷領域的應用和風險。然後就生成式AI的應用,設計製造、教育、客戶服務、媒體與娛樂、市場營銷等相關領域提供了一些示例。
Thumbnail
生成式AI(Generative AI)能夠創造新內容和想法,包括對話、故事、圖像、視訊和音樂等。本文將介紹幾種生成式AI模型,以及其在設計製造、教育、客戶服務、媒體與娛樂、市場營銷領域的應用和風險。然後就生成式AI的應用,設計製造、教育、客戶服務、媒體與娛樂、市場營銷等相關領域提供了一些示例。
Thumbnail
筆記-曲博談AI模型.群聯-24.05.05 https://www.youtube.com/watch?v=JHE88hwx4b0&t=2034s *大型語言模型 三個步驟: 1.預訓練,訓練一次要用幾萬顆處理器、訓練時間要1個月,ChatGPT訓練一次的成本為1000萬美金。 2.微調(
Thumbnail
筆記-曲博談AI模型.群聯-24.05.05 https://www.youtube.com/watch?v=JHE88hwx4b0&t=2034s *大型語言模型 三個步驟: 1.預訓練,訓練一次要用幾萬顆處理器、訓練時間要1個月,ChatGPT訓練一次的成本為1000萬美金。 2.微調(
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
這篇文章介紹瞭如何利用生成式AI(GenAI)來提高學習效率,包括文章重點整理、完善知識體系、客製化學習回饋、提供多元觀點等方法。同時提醒使用者應注意內容的信效度,保持學術誠信,適當運用GenAI能大幅提升工作效率。
Thumbnail
延續上週提到的,「有哪些不訓練模型的情況下,能夠強化語言模型的能力」,這堂課接續介紹其中第 3、4 個方法
Thumbnail
延續上週提到的,「有哪些不訓練模型的情況下,能夠強化語言模型的能力」,這堂課接續介紹其中第 3、4 個方法
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News