— 這個 E 會推著能量流動、把雜訊推進來、把 EMI 推出去,讓工程從「靜態」直接進入「動態」。 (VOCUS:IV. 時變電磁場與 Maxwell 方程|第 26 單元)
═══════════════════════════════════════
🎯 單元學習目標
完成本單元後,你將能夠:
① 用一句話講清楚:感應=時間變化逼出電場
② 分辨 3 種常見感應:變壓器式 / 動生電動勢 / 渦電流
③ 會用工程最常用式:EMF = −N·dΦ/dt
④ 看懂微分式的警告:∇×E = −∂B/∂t(靜磁在這裡破)
⑤ 讀懂負號(楞次定律):反抗變化=能量守恆的保險絲
⑥ 把感應翻成現象鏈:尖峰、串擾、EMI、發熱、ringing、量測誤差
═══════════════════════════════════════🧭 1|核心定位:感應不是「線圈電壓」,是「時間變化逼出電場」
✅ Φ_B(t) 只要在變 → 空間就被迫出現環狀 E → 回路上就會出現 EMF/電流。
【圖 1|感應的真正主角:環狀電場】
Φ_B(t) 改變 → ⟲E 出現 → EMF / I ↑Φ / ↓Φ → ⟲ ⟲ ⟲ → v_ind / i_eddy
【圖 2|「線圈電壓」只是外觀】
同一個 ⟲E,被不同對象「看見」:
• 線圈:v_ind
• 金屬:i_eddy(渦電流)
• 鄰近回路:v₂(互感串擾)
═══════════════════════════════════════
🧲 2|三種常見型態(工程最常遇到的三張臉)
(1) 🌀 變壓器式感應(Transformer EMF)
磁通變動穿過線圈面積 → 線圈端出現感應電壓 應用:變壓器、耦合電感、隔離電源、訊號耦合
【圖 3|變壓器式:磁通穿過線圈】
Φ(t) 穿越回路面積 A → N 匝回路感應:v_ind = −N·dΦ/dt 視覺直覺:Φ(t) ↑↓ → ⟲E ↑↓ → v_ind ↑↓
(2) 🛞 動生電動勢(Motional EMF)
導體在 B 中運動(切割磁力線) → 導體兩端出現電壓 應用:馬達、發電機、速度感測
【圖 4|動生:導體切割磁場】
B 指向紙內:⊗ ⊗ ⊗ ⊗ ⊗ 導體速度:v → 受力方向:q(v×B) ↑ 導體兩端:− … + (電壓被拉出來)
(3) 🔥 渦電流(Eddy current)
時變 B 在金屬內逼出環狀 E → 形成閉合電流 → 發熱/損耗/干擾 應用:磁芯損、金屬外殼發熱、屏蔽設計、感應加熱
【圖 5|渦電流:金屬裡自己形成電流圈】
時變 B 穿過金屬 → 金屬內被迫出現 ⟲E → i_eddy:⟲ ⟲ ⟲ → 熱↑、損耗↑、雜訊↑、EMI↑
✅ 工程一句話:同一個「感應」,想要時是能量轉換;不想要時是損耗與干擾。
═══════════════════════════════════════
🧮 3|工程最常用的公式(把直覺變成可算)
【數學 A|積分形式:EMF = −dΦ/dt】
∮_C E·dl = − d/dt ∬_S B·dA = − dΦ_B/dt
若 N 匝、磁通近似一致:
v_ind = −N·dΦ_B/dt
【圖 6|負號(楞次定律)的工程翻譯】
Φ 想增加 ↑ → 感應效應「反抗增加」(往 ↓ 推回去) Φ 想減少 ↓ → 感應效應「反抗減少」(往 ↑ 拉回去) 結論:你要讓 Φ 變快,就會被「頂住」→ 尖峰/反衝更兇
【數學 B|微分形式:靜態世界的破口】
∇×E = −∂B/∂t
✅ 翻譯:只要 ∂B/∂t ≠ 0,E 就會變成「繞圈的非保守場」
→ 不能只靠電勢 V 來解釋,動態效應一定出現。
═══════════════════════════════════════
🛠️ 4|工程最常見的 5 個「法拉第翻車現場」
(1) 📣 EMI / 串擾:你的 dI/dt 逼別人的回路出 EMF
【圖 7|你一切換,別人就被感應】 Loop1:I(t) 變 → B(t) 變 → Φ 穿過 Loop2 Loop2:v₂ = M·dI/dt 鏈:dI/dt ↑ → v₂ ↑ → 串擾↑ / EMI↑
(2) ⚡ L·di/dt 尖峰:nH 在 ns 世界=伏特級
【圖 8|nH + ns = 伏特級尖峰】 ΔV = L·ΔI/Δt L 小(nH)× ΔI/Δt 大(A/ns)→ ΔV 仍可到 V 等級
(3) 🔥 金屬外殼發熱:渦電流把能量吃掉
時變 Φ 穿過外殼/屏蔽 → ⟲E → i_eddy → 熱↑ (效率↓、溫飄↑、可靠度風險↑)
(4) 🎢 Ringing:L 與 C 把能量關起來來回彈
磁場能量 ↔ 電場能量 互換(高 Q 更兇) → ringing / overshoot / 噪聲耦合
(5) 🧲 量測誤差:探棒/地線本身也是「被感應回路」
【圖 9|量測迴路越大,越容易把感應噪聲量進來】 小迴路:⟲(面積小)→ Φ_link 小 → v_spur 小 大迴路:⟲⟲⟲(面積大)→ Φ_link 大 → v_spur 大
一句話:你以為在量 DUT,其實把「自己的迴路」量進來
═══════════════════════════════════════
🛰️ 5|衛星 × 光通訊:法拉第怎麼把 BER 推高?
案例 A|雷射/調變器驅動:高速 dI/dt → 尖峰/串擾 → 抖動 → BER
【 圖 10|從 dΦ/dt 到 BER 的因果鏈】
dI/dt ↑ → dΦ/dt ↑ → v_ind ↑ → { 供電紋波↑ / 地彈↑ } → clock jitter ↑ → { 近場耦合↑ / 串擾↑ } → 噪聲底 ↑ → 眼圖收斂 → link margin ↓ → BER ↑
案例 B|PAT 致動線圈:動作越激烈 → Φ 變越快 → 感應噪聲污染控制/感測
Φ 變快 → v_ind / 串擾 ↑ → 感測雜訊↑、控制抖動↑ → 耦合效率↓ → BER↑
案例 C|地面站:長線束 + 金屬結構 → 感應 EMF + 渦電流 → 共模噪聲/發熱
大迴路 + 金屬結構 → i_eddy / 共模噪聲↑ → 噪聲底↑、靈敏度↓ → BER↑
═══════════════════════════════════════
✅ 6|本單元小結
法拉第定律的核心不是「線圈產生電壓」,而是「磁通量只要隨時間改變,就會逼出環狀電場」。工程常用式 v_ind = −N·dΦ/dt;微分式 ∇×E = −∂B/∂t 則直接宣告:只要 ∂B/∂t 不可忽略,感應電壓、串擾、EMI、渦電流損耗與 ringing 都會自然出現。工程上的尖峰、互感串擾、外殼發熱、量測噪聲,本質都源自同一個「被迫出現的 ⟲E」;在衛星光通訊中,高速驅動、致動線圈與長線束/金屬結構,會以抖動與噪聲底抬升吞噬 link margin,最終推升 BER。
═══════════════════════════════════════
🧪 單元數學練習題
練習 1|線圈感應電壓(必做)
N=200 匝;Φ:0.60 mWb → 0.10 mWb;Δt=5 ms,求 |v|。
✅ 解析:
ΔΦ = −0.50×10⁻³ Wb dΦ/dt = ΔΦ/Δt = (−0.50×10⁻³)/(5×10⁻³) = −0.10 Wb/s v = −N·dΦ/dt = −200×(−0.10) = 20 V → |v| = 20 V
練習 2|L·di/dt 尖峰(必做)
L=8 nH;0.8 ns 內 ΔI=1.5 A,求 ΔV。
✅ 解析:
di/dt = ΔI/Δt = 1.5/(0.8×10⁻⁹) = 1.875×10⁹ A/s ΔV = L·di/dt = 8×10⁻⁹ × 1.875×10⁹ = 15 V
練習 3|Φ(t)=Φ₀ sin(ωt) 的峰值(觀念+計算)
Φ₀=2 μWb;f=1 MHz,求 V_peak。
✅ 解析:
v(t)=−dΦ/dt = −Φ₀ω cos(ωt) V_peak = Φ₀ω ω = 2πf = 2π×10⁶ V_peak = 2×10⁻⁶ × 2π×10⁶ = 4π ≈ 12.57 V
練習 4|互感串擾(必做)
M=6 nH;1 ns 內 ΔI=2 A,求 |v₂|。
✅ 解答解析:
dI/dt = 2/(1×10⁻⁹) = 2×10⁹ A/s |v₂| = M·dI/dt = 6×10⁻⁹×2×10⁹ = 12 V
練習 5|兩句話把 BER 鏈講清楚(概念)
✅ 解析:
di/dt 變大 → dΦ/dt 變大,依法拉第定律逼出更大的感應電壓(含 L·di/dt 尖峰與互感串擾),使供電紋波與地彈上升、時脈抖動與接收噪聲底抬升。 眼圖因此收斂、link margin 下降,最後把 BER 推高。