【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期

更新於 發佈於 閱讀時間約 3 分鐘
raw-image



我們在「【🔒 Python API框架篇 - FastAPI】Ep.1 啟航」有分享 FastAPI 這套API框架, 那麼當我們想要在應用程式剛執行時就註冊一些事件或者共享GPU運算模型、變數…等,當整個應用程式關閉時也進行釋放作業, 這樣的一個週期循環就是所謂的生命週期, 而在FastAPI這套框架中也設計了生命週期的管理機制讓我們開發起來更加容易, 就讓我們來看看這是怎麼一回事吧!

使用情境

假設我們設計一個AI辨識引擎的API, 那麼我們總不希望每次的請求都重新載入模型之後才開始作業吧! 這會非常的耗時, 使用者體驗也非常的糟糕, 我們應該是在程式啟動時就先載好模型, 之後都是等待使用者的請求之後立即就能夠進行作業, 就像是餐廳不可能當每位顧客點餐時才開始備料吧! 這肯定會讓生意非常的糟糕, 千萬不要這樣啊~~~

先來了解一下 contextmanager

相信我們應該常常使用以下的程式碼來開啟文字檔吧…

with open('xxx.txt', 'w', encoding='utf-8') as f:
print(...)

它讓我們將釋放資源的作業變得更加簡單, 我們在 with 裡任意進行作業, 也不用特別的去關閉或者釋放檔案的資源, 因為當with裡的作業結束之後就會自動觸發close事件, 看到這裡, 您可能會困惑, 這跟 contextmanager 有啥關係? 其實兩者觀念相似, 主要的目的都是為了省去我們釋放的程序, 一律自動管理, 避免人為疏失導致程式BUG。

那麼轉換到FastAPI呢?

在FastAPI裡面有個重要的功能, 那便是「@asynccontextmanager」, 透過它可以定義一個「lifespan」的函式, 定義好開始邏輯之後, 再透過 yield返回, 再定義結束的邏輯如下:

from contextlib import asynccontextmanager

from fastapi import FastAPI

def fake_answer_to_everything_ml_model(x: float):
return x * 42

ml_models = {}

@asynccontextmanager
async def lifespan(app: FastAPI):
# 載入ML模型
ml_models["answer_to_everything"] = fake_answer_to_everything_ml_model
yield
# 釋放資源
ml_models.clear()

app = FastAPI(lifespan=lifespan)

@app.get("/predict")
async def predict(x: float):
result = ml_models["answer_to_everything"](x)
return {"result": result}

那我們可以怎麼傳遞共享變數到router呢?

在FastAPI有個Sharing State可以幫助我們共享狀態, 詳細請參考「【Python 軍火庫🧨 - FastAPI】Sharing State讓路由共享資訊」, 透過共享物件的傳遞, 讓我們節省資源, 達到共用之效果。

結語

我們在設計一個應用程式時,需要做一個全面的考量,在哪些生命週期該做哪些事情這些都需要去思考,FastAPI 對於這些事情基本上支援的很全面,如果官方文件沒有提到,那可以去看他的底層 Starlette 這個框架的官方文件,通常可以獲得你想要的答案。

avatar-img
118會員
266內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
阿Han的沙龍 的其他內容
當我們在開發一個AI應用服務時, 常常會需要載入大模型, But… 我們總不可能每一次的請求就載入一次模型吧! 這樣太沒有效率了, 也非常的浪費資源, 因此我們通常會希望應用程式啟動時就能夠載入模型, 之後每一次的請求只要讓模型進行運算即可, 那麼在FastAPI的框架中究竟要如何使用呢? 首
使用Python開發後端API的經驗中應該會常常看到WSGI與ASGI這兩個名詞, 兩者的差異究竟是什麼呢? 就讓我們來為您科普一番。 什麼是WSGI 全名為「Web Server Gateway Interface」 Web伺服器閘道介面,主要規範HTTP請求如何與伺服器溝通, 通
當我們在撰寫一套系統的時候, 總是會提供一個介面讓使用者來觸發功能模組並回傳使用者所需的請求, 而傳統的安裝包模式總是太侷限, 需要個別主機獨立安裝, 相當繁瑣, 但隨著時代的演進與互聯網的崛起, 大部分的工作都可以藉由網頁端、裝置端來觸發, 而伺服端則是負責接收指令、運算與回傳結果, 雲端
當我們在進行影像處理時, 在Python的世界最常聽到的就是OpenCV, 而我們在處理影片時也會想要僅針對某時間段的影片進行處理, 今天我們就來教您如何透過OpenCV來讀取特定的時間區段。 在進入主題之前, 有一些基本概念務必先行建立, 一個影片是由多張圖片組成的, 因此最小單元為一張圖
當我們在進行「語音辨識」的應用開發時, 首先會面臨一個問題, 那就是究竟要怎麼知道哪些段落是「人在說話的區段」, 精確的標示出這些區段之後, 我們除了可以儲存成純對話的段落, 還可以做出時間軸的字幕檔, 應用非常廣泛, 因此學會怎麼用VAD是進入語音領域非常重要的其中一個環節。 VAD代表
關於Websockets的篇章, 有興趣的朋友歡迎參考: 【Python 軍火庫 - websockets】雙向溝通的渠道 【Python 軍火庫 - websockets】用json來溝通吧! 而這一篇章的主題主要是來分享如何透過websockets傳遞音檔並進行解碼, 我們都知道聲
當我們在開發一個AI應用服務時, 常常會需要載入大模型, But… 我們總不可能每一次的請求就載入一次模型吧! 這樣太沒有效率了, 也非常的浪費資源, 因此我們通常會希望應用程式啟動時就能夠載入模型, 之後每一次的請求只要讓模型進行運算即可, 那麼在FastAPI的框架中究竟要如何使用呢? 首
使用Python開發後端API的經驗中應該會常常看到WSGI與ASGI這兩個名詞, 兩者的差異究竟是什麼呢? 就讓我們來為您科普一番。 什麼是WSGI 全名為「Web Server Gateway Interface」 Web伺服器閘道介面,主要規範HTTP請求如何與伺服器溝通, 通
當我們在撰寫一套系統的時候, 總是會提供一個介面讓使用者來觸發功能模組並回傳使用者所需的請求, 而傳統的安裝包模式總是太侷限, 需要個別主機獨立安裝, 相當繁瑣, 但隨著時代的演進與互聯網的崛起, 大部分的工作都可以藉由網頁端、裝置端來觸發, 而伺服端則是負責接收指令、運算與回傳結果, 雲端
當我們在進行影像處理時, 在Python的世界最常聽到的就是OpenCV, 而我們在處理影片時也會想要僅針對某時間段的影片進行處理, 今天我們就來教您如何透過OpenCV來讀取特定的時間區段。 在進入主題之前, 有一些基本概念務必先行建立, 一個影片是由多張圖片組成的, 因此最小單元為一張圖
當我們在進行「語音辨識」的應用開發時, 首先會面臨一個問題, 那就是究竟要怎麼知道哪些段落是「人在說話的區段」, 精確的標示出這些區段之後, 我們除了可以儲存成純對話的段落, 還可以做出時間軸的字幕檔, 應用非常廣泛, 因此學會怎麼用VAD是進入語音領域非常重要的其中一個環節。 VAD代表
關於Websockets的篇章, 有興趣的朋友歡迎參考: 【Python 軍火庫 - websockets】雙向溝通的渠道 【Python 軍火庫 - websockets】用json來溝通吧! 而這一篇章的主題主要是來分享如何透過websockets傳遞音檔並進行解碼, 我們都知道聲
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
打開 jupyter notebook 寫一段 python 程式,可以完成五花八門的工作,這是玩程式最簡便的方式,其中可以獲得很多快樂,在現今這種資訊發達的時代,幾乎沒有門檻,只要願意,人人可享用。 下一步,希望程式可以隨時待命聽我吩咐,不想每次都要開電腦,啟動開發環境,只為完成一個重複性高
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 xxx ,ChatGPT 除了產生程式周邊的文字描述,事實上它還會回覆程式語法的指令 : !pip install scikit-learn import nu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 32中,展示了OpenAI的API如何使用,儘管 API 可以滿足許多需求,但它們也有其限制,例如,多用途 API 可能在所有任務
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 生成式人工智慧模糊了雲端平台、框架、函式庫、語言和模型之間的界線,以下展開幾項事實: OpenAI 部署了一個Transformer API,幾乎不需要程式設計。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 7,已經完成Colab Python環境配置。 針對Attention Layer的程式配置為: start_time =
這篇文章介紹了Pythonic API在AI模型的推理和部署以及個人化服務方面的性能優勢,以及與商業模式、個人化Knowledge Graph和GenAI的集成。同時探討了Pythonic編程文化、Python效能、API商業模式和人工智慧個人化的相關問題。
Thumbnail
今天來介紹python的函式 函式在python中是非常重要的一環,因為到了後期,程式會越來越複雜。 而函式可以想成是容易管理的小程式,當我們需要使用時,只需呼叫即可。
Thumbnail
👨‍💻簡介 最近因為憑證越來越多,需要監控什麼時候到期,當到期時發送到期通知,因此撰寫一個簡單的小程式來完成。 這次使用Python和Telegram Bot來監控SSL證書的到期時間並發送通知。並使用GCP工具,如CloudFunction和CloudScheduler做部署平台。
Thumbnail
先前幾篇筆記介紹了網路請求,瀏覽器儲存資料的方式,那麼實務上,前端最常需要發送網路請求的時候,就是透過呼叫 API,去向後端工程師發送/請求資料,所以今天來記錄什麼是 API吧!
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
打開 jupyter notebook 寫一段 python 程式,可以完成五花八門的工作,這是玩程式最簡便的方式,其中可以獲得很多快樂,在現今這種資訊發達的時代,幾乎沒有門檻,只要願意,人人可享用。 下一步,希望程式可以隨時待命聽我吩咐,不想每次都要開電腦,啟動開發環境,只為完成一個重複性高
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 xxx ,ChatGPT 除了產生程式周邊的文字描述,事實上它還會回覆程式語法的指令 : !pip install scikit-learn import nu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 32中,展示了OpenAI的API如何使用,儘管 API 可以滿足許多需求,但它們也有其限制,例如,多用途 API 可能在所有任務
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 生成式人工智慧模糊了雲端平台、框架、函式庫、語言和模型之間的界線,以下展開幾項事實: OpenAI 部署了一個Transformer API,幾乎不需要程式設計。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 7,已經完成Colab Python環境配置。 針對Attention Layer的程式配置為: start_time =
這篇文章介紹了Pythonic API在AI模型的推理和部署以及個人化服務方面的性能優勢,以及與商業模式、個人化Knowledge Graph和GenAI的集成。同時探討了Pythonic編程文化、Python效能、API商業模式和人工智慧個人化的相關問題。
Thumbnail
今天來介紹python的函式 函式在python中是非常重要的一環,因為到了後期,程式會越來越複雜。 而函式可以想成是容易管理的小程式,當我們需要使用時,只需呼叫即可。
Thumbnail
👨‍💻簡介 最近因為憑證越來越多,需要監控什麼時候到期,當到期時發送到期通知,因此撰寫一個簡單的小程式來完成。 這次使用Python和Telegram Bot來監控SSL證書的到期時間並發送通知。並使用GCP工具,如CloudFunction和CloudScheduler做部署平台。
Thumbnail
先前幾篇筆記介紹了網路請求,瀏覽器儲存資料的方式,那麼實務上,前端最常需要發送網路請求的時候,就是透過呼叫 API,去向後端工程師發送/請求資料,所以今天來記錄什麼是 API吧!