影像辨識

含有「影像辨識」共 13 篇內容
全部內容
發佈日期由新至舊
類神經網路在圖形辨識應用中需要大量資料進行訓練,並常透過分批訓練來優化模型。本文介紹如何使用「MNIST」資料庫進行手寫數字辨識,並透過「資料分批」來有效處理訓練資料。最終,分批訓練的手法能夠提升模型的辨識能力,實現持續學習。
Thumbnail
本文介紹使用 PyTorch 及類神經網路進行圖形資料集的分類。Fashion-MNIST 提供了機器學習研究上的著名範例;服飾的灰階圖像的分類。本文指導讀者從安裝 torchvision 到建立類神經網路,進行圖形分類的完整過程。也詳述了資料處理及訓練過程,幫助理解類神經網路在圖形分類上的應用。
Thumbnail
人工智慧是什麼? 人工智慧(Artificial Intelligence, AI) 簡單來說,就是讓機器模仿人類的思考、學習和決策的能力。它就像是一個聰明的電腦程序,可以執行許多原本需要人類智慧才能完成的工作,例如: 語音辨識: 讓電腦聽懂人類的語言,像是 Siri、Google As
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
付費限定
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
付費限定
Frames per second簡稱FPS, 也就是每秒幾個幀數的意思, 平常我們看到的影片背後其實都是一張張圖片的組成, 而這一幅畫面就是影片的每一幀。 由於人眼的特殊生理結構, 畫面的幀數只要高於每秒10 - 12張的時候就會認為是連貫的, 這也就是為什麼電影膠片是一格格的拍攝出來, 但是藉
Thumbnail
針對辨識物的不同,流程就會不一樣,在依照現實狀況進行刪減,以下說明為個人常用的流程。 基本流程: 讀圖 灰階 濾波 (看圖片雜訊多不多) 二值化 連通區域 特徵篩選 特徵資訊 辨識 - (OCR,量測,瑕疵檢測等。) 名詞介紹 Gray 灰階 將原始的彩色圖像轉換為灰階圖
Thumbnail
付費限定
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
付費限定
繼上次分享的「【🔒 影像辨識 - 影像處理】Ep.1 關於影像的基本單位, 相信我們對於影像的儲存應該有了基本的認識了, 那麼接下來我們會需要的是了解顏色的組成。 我們除了在文章裡講述概念之外, 也會提供實作的數位作品分享給大家, 請大家根據範例學習與練習。 關於顏色 灰階的時代 早期尚未
Thumbnail
付費限定
2月22日進場之前 因工作關係,從去年底開始搜尋有關AI影像自動辨識的廠商,最後選擇有股票上市櫃的集團旗下品牌。 3月起ChatGPT 浪潮 因為ChatGPT 生成式AI太火,也親自體驗時下流行生成式圖案。 先蹲後跳 因為持有了,也沒想到它與GPT有直接關聯。依照個人的操作習慣,等待波浪的循環、創
Thumbnail