[建模]-系統建模

更新於 發佈於 閱讀時間約 3 分鐘

分類原則請參照這篇

raw-image

狹義來說,我們把建模視為幾何建模的簡寫,但是廣義來說他應該是會包含發熱體行為,風扇行為,所有會影響到各方程式架設的因子。也就是說如果我們今天以最基本熱流模型,那就會有流的建模和熱的建模。

流體建模

雖然說是流體建模,但是實際上卻是畫固體邊界,然後不屬於固體的部分通通是流體。一般概念的幾何建模目的就在這裡。但建模方法其實並不限於繪製幾何,流阻,也是一種等效模型,作用對象也是NS equations (和紊流方程式,如果有的話)。如果手上有實驗參數,說實在效果不一定比幾何繪製來的差,如果不是因為大部分的時候我是在瞎子摸象,其實我還蠻想用流阻把鰭片模型代換掉的。

熱的建模

控制熱的方程式有固體-傅立葉和流體-牛頓冷卻(受NS影響)兩條,後者如果我們是系統建模,倒沒什麼需要特別做的。電子冷卻熱是從晶片出來,固體熱傳這條路徑是影響最大的因子,然而如果今天是系統建模,卻受限計算能力下難以繪製細部模型,通常都是透過等效模型來架設方程式。如果可以建立CCM模型,那麼就是透過等效熱傳導係數,更等效一點就是使用熱阻模型。

定義問題

在建立模型之前,更重要的是定義問題場景,例如在NS-Eqns中,一般就是風扇,在Engergy-Eqns中則是晶片發熱量。有時比起糾結在變動量不大的參數上,系統Stanby power與Full loading power差到1000W是常有的事。
這個部分,講求的是和設計上的共識,一個系統有多種場景定義並不衝突,但是很常發生的就是做的時候要求做worst case,等到真做出來不會過又說,"阿~~實際上不會吃這麼高瓦啦",要目標產品可靠或是目標成本經濟都是可以接受的,但是先射箭再畫靶這就沒有意義了。

除了定義場景以外另一個部份是定義範圍,這就是模擬工程師份內的事了。
為了簡化模型,我們會盡可能的縮小問題,但是如何縮小到不失真又是另一個問題,例如從晶片到散熱片到系統到外界,問題總可以往外延伸,然而資源不是。
畫到什麼程度? 一種方法是多畫幾種來比比看,等到再大也沒差的時候就可以收手,另一種就是和實際值做參考。

簡化模型

建模是一個很尷尬的狀況,畫的時候是寫實派,但解的時候又希望是印象派。
凡是提到資源都不得不夢想落地,乖乖和現實妥協,在模擬就體現在簡化特徵。
這點導致,通常機構用的幾何無法直接使用在模擬上,對我們來說這只能是參考。實際上一定盡可能用最簡單的幾何,搭配調整過的參數,去描述該元件的行為,至於和目標行為無關的部分甚至是元件? 直接忽略是最快的做法。

留言
avatar-img
留言分享你的想法!
avatar-img
熱流資訊站的沙龍
47會員
45內容數
和工作相關的筆記整理地
2022/10/07
在 Icepak 中要模擬 IC 的發熱行為有幾種方法: 1. 熱阻模型 / 2-resistor or multi-resistor 2. CCM IC module 3. CCM Vendor model 其中運算最快的當屬熱阻模型,因為內部網格不求解,只有表面與Junction間的關係
Thumbnail
2022/10/07
在 Icepak 中要模擬 IC 的發熱行為有幾種方法: 1. 熱阻模型 / 2-resistor or multi-resistor 2. CCM IC module 3. CCM Vendor model 其中運算最快的當屬熱阻模型,因為內部網格不求解,只有表面與Junction間的關係
Thumbnail
2022/09/27
系統模擬有一個好處是,我們可以直接堆完擺件然後以此做為流阻,去找風扇操作點,以此作為依據,從而得到溫度的結果,避開設定流量邊界的困擾。當然如果能直接設定流量是又快又省事,但是這是在東西做出來之後才有辦法透過實驗量測,在東西出來以前,你又想要有參考基準,這會是卡死的迴圈。
Thumbnail
2022/09/27
系統模擬有一個好處是,我們可以直接堆完擺件然後以此做為流阻,去找風扇操作點,以此作為依據,從而得到溫度的結果,避開設定流量邊界的困擾。當然如果能直接設定流量是又快又省事,但是這是在東西做出來之後才有辦法透過實驗量測,在東西出來以前,你又想要有參考基準,這會是卡死的迴圈。
Thumbnail
2022/09/06
建模 (Modeling) 畫細不難,難在用最經濟的方式達成 "雖不中亦不遠矣"。 網格 (Meshing) 任憑你列式再怎麼漂亮,解不出來就是白搭。 求解 (iterating) 能收斂都好說,不能收斂就是痛苦的開始
Thumbnail
2022/09/06
建模 (Modeling) 畫細不難,難在用最經濟的方式達成 "雖不中亦不遠矣"。 網格 (Meshing) 任憑你列式再怎麼漂亮,解不出來就是白搭。 求解 (iterating) 能收斂都好說,不能收斂就是痛苦的開始
Thumbnail
看更多
你可能也想看
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
提供一條簡單公式、一套盤點思路,幫助你快速算出去日本自助旅遊需要準備多少日幣現金!
Thumbnail
提供一條簡單公式、一套盤點思路,幫助你快速算出去日本自助旅遊需要準備多少日幣現金!
Thumbnail
在 Icepak 中要模擬 IC 的發熱行為有幾種方法: 1. 熱阻模型 / 2-resistor or multi-resistor 2. CCM IC module 3. CCM Vendor model 其中運算最快的當屬熱阻模型,因為內部網格不求解,只有表面與Junction間的關係
Thumbnail
在 Icepak 中要模擬 IC 的發熱行為有幾種方法: 1. 熱阻模型 / 2-resistor or multi-resistor 2. CCM IC module 3. CCM Vendor model 其中運算最快的當屬熱阻模型,因為內部網格不求解,只有表面與Junction間的關係
Thumbnail
在這兩篇曾經提過PCB Layout對於晶片溫度有著不小的影響: IC的熱相關參數: 熱傳遞路線與THERMAL METRIC IC的熱相關參數: 熱阻與熱特性參數 這篇透過3種狀況來比較其表現,分別是: 載入真實線路,等效熱傳導係數,以及一整塊FR-4,分別對應Rjb從大到小,讓大家用模擬感受一下
Thumbnail
在這兩篇曾經提過PCB Layout對於晶片溫度有著不小的影響: IC的熱相關參數: 熱傳遞路線與THERMAL METRIC IC的熱相關參數: 熱阻與熱特性參數 這篇透過3種狀況來比較其表現,分別是: 載入真實線路,等效熱傳導係數,以及一整塊FR-4,分別對應Rjb從大到小,讓大家用模擬感受一下
Thumbnail
熱傳遞路線 一個典型的IC封裝大概長這樣,下面是內部結構和背面的示意圖 於是經過簡化後,一顆IC打在PCB上可以簡化成這樣子的一個模型 以晶片為發熱體,熱的路徑可能從樹脂走,可能通過PCB走到背面,可能走Lead frame,或是各種意想不到的方式,但是主要的路徑是以下這兩條 按照這個簡化模型的熱阻
Thumbnail
熱傳遞路線 一個典型的IC封裝大概長這樣,下面是內部結構和背面的示意圖 於是經過簡化後,一顆IC打在PCB上可以簡化成這樣子的一個模型 以晶片為發熱體,熱的路徑可能從樹脂走,可能通過PCB走到背面,可能走Lead frame,或是各種意想不到的方式,但是主要的路徑是以下這兩條 按照這個簡化模型的熱阻
Thumbnail
系統模擬有一個好處是,我們可以直接堆完擺件然後以此做為流阻,去找風扇操作點,以此作為依據,從而得到溫度的結果,避開設定流量邊界的困擾。當然如果能直接設定流量是又快又省事,但是這是在東西做出來之後才有辦法透過實驗量測,在東西出來以前,你又想要有參考基準,這會是卡死的迴圈。
Thumbnail
系統模擬有一個好處是,我們可以直接堆完擺件然後以此做為流阻,去找風扇操作點,以此作為依據,從而得到溫度的結果,避開設定流量邊界的困擾。當然如果能直接設定流量是又快又省事,但是這是在東西做出來之後才有辦法透過實驗量測,在東西出來以前,你又想要有參考基準,這會是卡死的迴圈。
Thumbnail
關於塑膠件的設計流程中,除了模具設計部門(或廠商) 對於機構設計部件所做的 tooling DFM之外,做重要的就是 "模流分析" 了。 IG:https://instagram.com/tomdaddydesign/
Thumbnail
關於塑膠件的設計流程中,除了模具設計部門(或廠商) 對於機構設計部件所做的 tooling DFM之外,做重要的就是 "模流分析" 了。 IG:https://instagram.com/tomdaddydesign/
Thumbnail
分類原則請參照這篇 狹義來說,我們把建模視為幾何建模的簡寫,但是廣義來說他應該是會包含發熱體行為,風扇行為,所有會影響到各方程式架設的因子。也就是說如果我們今天以最基本熱流模型,那就會有流的建模和熱的建模。 雖然說是流體建模,但是實際上卻是畫固體邊界,然後不屬於固體的部分通通是流體。一般概
Thumbnail
分類原則請參照這篇 狹義來說,我們把建模視為幾何建模的簡寫,但是廣義來說他應該是會包含發熱體行為,風扇行為,所有會影響到各方程式架設的因子。也就是說如果我們今天以最基本熱流模型,那就會有流的建模和熱的建模。 雖然說是流體建模,但是實際上卻是畫固體邊界,然後不屬於固體的部分通通是流體。一般概
Thumbnail
分類準則參照這篇 網格是CFD永遠的痛,痛到連老闆都略知一二。東西畫得出來解不出來87%是網格的鍋,畫的差解不了,畫的多解不動,動不動就憑經驗靠感覺,氣氣氣氣氣。(由於個人還是用Icepak居多,雖然概念上大同小異,但說明上就難以兼顧了。)
Thumbnail
分類準則參照這篇 網格是CFD永遠的痛,痛到連老闆都略知一二。東西畫得出來解不出來87%是網格的鍋,畫的差解不了,畫的多解不動,動不動就憑經驗靠感覺,氣氣氣氣氣。(由於個人還是用Icepak居多,雖然概念上大同小異,但說明上就難以兼顧了。)
Thumbnail
建模 (Modeling) 畫細不難,難在用最經濟的方式達成 "雖不中亦不遠矣"。 網格 (Meshing) 任憑你列式再怎麼漂亮,解不出來就是白搭。 求解 (iterating) 能收斂都好說,不能收斂就是痛苦的開始
Thumbnail
建模 (Modeling) 畫細不難,難在用最經濟的方式達成 "雖不中亦不遠矣"。 網格 (Meshing) 任憑你列式再怎麼漂亮,解不出來就是白搭。 求解 (iterating) 能收斂都好說,不能收斂就是痛苦的開始
Thumbnail
本文的來源,是在進行長時間燒機時,馬達本體的溫度為45度,但在遠離馬達的機台組裝面上,反而量到50度,因此進行模擬確認;最終也確認是機台本體有其它的機械磨擦產生熱源所造成的。
Thumbnail
本文的來源,是在進行長時間燒機時,馬達本體的溫度為45度,但在遠離馬達的機台組裝面上,反而量到50度,因此進行模擬確認;最終也確認是機台本體有其它的機械磨擦產生熱源所造成的。
Thumbnail
筆者從事建築學習及建築設計的工作大約有三十多年,雖然很少以建築為主題發表文章與看法,不過也一直在探尋有關建築設計創作架構的概念和公式。以上所述,也就是此一探尋的初步結果,而實際應用在建築概念設計的過程、當作一個建築設計的心法之時,也能使個人心中有譜而不至於六神無主,同時避免陷入現代建築哲學的……
Thumbnail
筆者從事建築學習及建築設計的工作大約有三十多年,雖然很少以建築為主題發表文章與看法,不過也一直在探尋有關建築設計創作架構的概念和公式。以上所述,也就是此一探尋的初步結果,而實際應用在建築概念設計的過程、當作一個建築設計的心法之時,也能使個人心中有譜而不至於六神無主,同時避免陷入現代建築哲學的……
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News