IC的熱相關參數: 熱傳遞路線與THERMAL METRIC

更新 發佈閱讀 2 分鐘

熱傳遞路線

一個典型的IC封裝大概長這樣,下面是內部結構和背面的示意圖

raw-image

於是經過簡化後,一顆IC打在PCB上可以簡化成這樣子的一個模型

raw-image

以晶片為發熱體,熱的路徑可能從樹脂走,可能通過PCB走到背面,可能走Lead frame,或是各種意想不到的方式,但是主要的路徑是以下這兩條

raw-image

按照這個簡化模型的熱阻模型就會長這樣

raw-image


其中:
Tj- 晶片表面溫 (Junction Temperature)
Tt-上殼表面溫
Tc- Exposed pad Temperature
Ta- 環境溫度

根據熱阻的模型,θja其實是兩條路線並聯的結果。


Thermal Metric

raw-image

之所以不適合直接拿θja由Ta逆推Tj除了環境問題以外,另一個問題是θca是跟著PCB設計走,因人而異,不同產品可以差很多的。
至於要拿θjc或是θjb來回推那就涉及一個問題: 你不知道哪一條路線走了幾瓦

因此最後你只能採用熱特性參數來進行回推的作業,因為他沒有物理意義,單純就是經驗公式,直接拿元器件瓦數下去推是沒問題的。
至於熱阻要怎麼用,比較合理的做法是IC內部的JT段與JC段可以輸入Datasheet的資料,而IC外的TA段與CA段則需要透過建立環境以及輸入PCB疊構的最後進行整體的模擬。

留言
avatar-img
留言分享你的想法!
avatar-img
熱流資訊站的沙龍
50會員
48內容數
和工作相關的筆記整理地
2024/12/19
在本文中,我們探討了多種測量溫度的技術,尤其是數位熱感測器(DTS)的運作原理與應用。傳統的熱電偶和電阻溫度計雖然常見,但在小型IC中不具可行性。DTS則利用二極體偏壓與電路設計,提供一種非破壞性的測量方式。文章還分析了DTS的準確性挑戰與改進空間,並討論瞭如何在多核運算下有效測量不同熱點的溫度。
2024/12/19
在本文中,我們探討了多種測量溫度的技術,尤其是數位熱感測器(DTS)的運作原理與應用。傳統的熱電偶和電阻溫度計雖然常見,但在小型IC中不具可行性。DTS則利用二極體偏壓與電路設計,提供一種非破壞性的測量方式。文章還分析了DTS的準確性挑戰與改進空間,並討論瞭如何在多核運算下有效測量不同熱點的溫度。
2022/10/07
在開始之前,可能需要對熱阻之類的東西有一些基本的認識 : IC的熱相關參數: 熱阻與熱特性參數 IC的熱相關參數: 熱傳遞路線與THERMAL METRIC 記憶體上面主要的發熱源為一顆顆的晶粒 容量越大的記憶體,基本上發熱量就越大。其中每一個廠商的晶粒熱特性也不盡相同,這邊參考的資料是美光的。 D
Thumbnail
2022/10/07
在開始之前,可能需要對熱阻之類的東西有一些基本的認識 : IC的熱相關參數: 熱阻與熱特性參數 IC的熱相關參數: 熱傳遞路線與THERMAL METRIC 記憶體上面主要的發熱源為一顆顆的晶粒 容量越大的記憶體,基本上發熱量就越大。其中每一個廠商的晶粒熱特性也不盡相同,這邊參考的資料是美光的。 D
Thumbnail
2022/10/04
對IC來說,熱是可能致命的,也因此對於溫度有著許多規格,但是也因此有著許多誤解。以下稍微說明關於各項溫度的定義; Junction Temperature: IC內部的最高溫度(基本上就是晶片發熱的位置) Ambient Air Temperature: 環境溫度,但是其實在不同協會中定義略有不同,
Thumbnail
2022/10/04
對IC來說,熱是可能致命的,也因此對於溫度有著許多規格,但是也因此有著許多誤解。以下稍微說明關於各項溫度的定義; Junction Temperature: IC內部的最高溫度(基本上就是晶片發熱的位置) Ambient Air Temperature: 環境溫度,但是其實在不同協會中定義略有不同,
Thumbnail
看更多
你可能也想看
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
還在煩惱平凡日常該如何增添一點小驚喜嗎?全家便利商店這次聯手超萌的馬來貘,推出黑白配色的馬來貘雪糕,不僅外觀吸睛,層次豐富的雙層口味更是讓人一口接一口!本文將帶你探索馬來貘雪糕的多種創意吃法,從簡單的豆漿燕麥碗、藍莓果昔,到大人系的奇亞籽布丁下午茶,讓可愛的馬來貘陪你度過每一餐,增添生活中的小確幸!
Thumbnail
在PCB 當中,和Via有關熱效應可以分作幾個方面: 1. 電流不經過Via, 但因為打了Via,而造成通道銅箔變窄 2. 因為Via的排列方式,導致每一顆Via經過的電流並不平均 模型以常見的Via32做測試,以截面積寬為361mil加載25A作為分析對象。觀察打了一組4x4的矩陣之後會有什麼狀況
Thumbnail
在PCB 當中,和Via有關熱效應可以分作幾個方面: 1. 電流不經過Via, 但因為打了Via,而造成通道銅箔變窄 2. 因為Via的排列方式,導致每一顆Via經過的電流並不平均 模型以常見的Via32做測試,以截面積寬為361mil加載25A作為分析對象。觀察打了一組4x4的矩陣之後會有什麼狀況
Thumbnail
在 Icepak 中要模擬 IC 的發熱行為有幾種方法: 1. 熱阻模型 / 2-resistor or multi-resistor 2. CCM IC module 3. CCM Vendor model 其中運算最快的當屬熱阻模型,因為內部網格不求解,只有表面與Junction間的關係
Thumbnail
在 Icepak 中要模擬 IC 的發熱行為有幾種方法: 1. 熱阻模型 / 2-resistor or multi-resistor 2. CCM IC module 3. CCM Vendor model 其中運算最快的當屬熱阻模型,因為內部網格不求解,只有表面與Junction間的關係
Thumbnail
在開始之前,可能需要對熱阻之類的東西有一些基本的認識 : IC的熱相關參數: 熱阻與熱特性參數 IC的熱相關參數: 熱傳遞路線與THERMAL METRIC 記憶體上面主要的發熱源為一顆顆的晶粒 容量越大的記憶體,基本上發熱量就越大。其中每一個廠商的晶粒熱特性也不盡相同,這邊參考的資料是美光的。 D
Thumbnail
在開始之前,可能需要對熱阻之類的東西有一些基本的認識 : IC的熱相關參數: 熱阻與熱特性參數 IC的熱相關參數: 熱傳遞路線與THERMAL METRIC 記憶體上面主要的發熱源為一顆顆的晶粒 容量越大的記憶體,基本上發熱量就越大。其中每一個廠商的晶粒熱特性也不盡相同,這邊參考的資料是美光的。 D
Thumbnail
在這兩篇曾經提過PCB Layout對於晶片溫度有著不小的影響: IC的熱相關參數: 熱傳遞路線與THERMAL METRIC IC的熱相關參數: 熱阻與熱特性參數 這篇透過3種狀況來比較其表現,分別是: 載入真實線路,等效熱傳導係數,以及一整塊FR-4,分別對應Rjb從大到小,讓大家用模擬感受一下
Thumbnail
在這兩篇曾經提過PCB Layout對於晶片溫度有著不小的影響: IC的熱相關參數: 熱傳遞路線與THERMAL METRIC IC的熱相關參數: 熱阻與熱特性參數 這篇透過3種狀況來比較其表現,分別是: 載入真實線路,等效熱傳導係數,以及一整塊FR-4,分別對應Rjb從大到小,讓大家用模擬感受一下
Thumbnail
熱傳遞路線 一個典型的IC封裝大概長這樣,下面是內部結構和背面的示意圖 於是經過簡化後,一顆IC打在PCB上可以簡化成這樣子的一個模型 以晶片為發熱體,熱的路徑可能從樹脂走,可能通過PCB走到背面,可能走Lead frame,或是各種意想不到的方式,但是主要的路徑是以下這兩條 按照這個簡化模型的熱阻
Thumbnail
熱傳遞路線 一個典型的IC封裝大概長這樣,下面是內部結構和背面的示意圖 於是經過簡化後,一顆IC打在PCB上可以簡化成這樣子的一個模型 以晶片為發熱體,熱的路徑可能從樹脂走,可能通過PCB走到背面,可能走Lead frame,或是各種意想不到的方式,但是主要的路徑是以下這兩條 按照這個簡化模型的熱阻
Thumbnail
熱阻(Thermal resistance)是一個將熱傳導以類似歐姆定律的方式表達,簡單好記因而獲得廣泛流傳,但是也因此遭到誤用的狀況也是層出不窮。 而熱阻本身的用意是為了讓不同公司的產品在熱表現上有可比性,因此放在相同的測試板上進行測量。測試方法在JEDEC51-1~51-11的文件上有嚴格的定義
Thumbnail
熱阻(Thermal resistance)是一個將熱傳導以類似歐姆定律的方式表達,簡單好記因而獲得廣泛流傳,但是也因此遭到誤用的狀況也是層出不窮。 而熱阻本身的用意是為了讓不同公司的產品在熱表現上有可比性,因此放在相同的測試板上進行測量。測試方法在JEDEC51-1~51-11的文件上有嚴格的定義
Thumbnail
本文要討論溫度對於馬達的影響。 主要先注意各個材料的部份,一般會注意的檢查順序如下 1. 絕緣材料:耐溫上限。 2. 磁鐵:耐溫上限及溫度影響磁力。 3. 漆包線:耐溫上限及電阻變化。 4. 軸承:潤滑油工作溫度範圍。 5. 出口電源線:耐溫上限。 其中絕緣材料、漆包線及出口電源線會直接影響安全問題
Thumbnail
本文要討論溫度對於馬達的影響。 主要先注意各個材料的部份,一般會注意的檢查順序如下 1. 絕緣材料:耐溫上限。 2. 磁鐵:耐溫上限及溫度影響磁力。 3. 漆包線:耐溫上限及電阻變化。 4. 軸承:潤滑油工作溫度範圍。 5. 出口電源線:耐溫上限。 其中絕緣材料、漆包線及出口電源線會直接影響安全問題
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News