LLM 004|創建大語言模型需要哪兩個關鍵階段?

更新於 發佈於 閱讀時間約 1 分鐘

從頭開始寫大語言模型的程式碼,


是最好理解大語言模型的機制與限制的方風。


從頭開始寫大語言模型的程式碼,可以幫助我們得到預訓練與微調整開源大語言模型架構所需要的知識,並應用到特定領域的數據及以及任務。


客製化大語言模型一般來說比起通用大語言模型有更好的表現。


一個具體的例子是BloombergGPT是專門於金融的大語言模型。


其他也有專門做醫療問答的大語言模型。


創造一個大語言模型包含「預訓練」與「微調整」兩個階段。


預訓練階段是在大量多種的數據集訓練大語言模型去開發語言理解。


這種預訓練模型作為基礎資源,可進行近一步的微調整。


微調整是在一個更狹義的數據集,對特定的任務與領域做額外改良的過程。


創造大語言模型的第一步,是在巨大的文本語料庫來訓練。


這種文本又稱為「原始文本 (Raw Text)」,表達數據只是一般的文本,沒有任何標籤的資訊。


大語言模型的第一訓練階段是「預訓練」,構造基礎模型,例如GPT-3模型。


基礎模型能夠做「文本補齊 Text Completion」,也就是將寫到一半的句子補成完整句子的能力。


大語言模型還有有限的「小樣本 Few-Shot」能力,也就是使用少量的樣本,大語言模型就能學習做新的任務。


這個能力的秘密,就在對不同的任務使用不同的Transformers。


「微調整 Finetuning」則是將預訓練的大語言模型進一步使用有標籤的數據來訓練。


在微調整大語言模型的任務中,兩類最受歡迎的是「指令微調 Instruction-Finetuning」與為了分類任務而做微調整。


在指令微調任務中,有貼標籤的數據集有一對對的指令與答案,例如給一段文本以及正確翻譯的文本。


在分類微調中,有貼標籤的數據集是一對對文本與類別標籤,例如一封郵件與垃圾信/非垃圾信的標籤。

avatar-img
534會員
1.8K內容數
Outline as Content
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
王啟樺的沙龍 的其他內容
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。 大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。 大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。 大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。 大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。 本文摘要自MIT 史隆管理評論,分析LLM 對工作帶來的影響。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
本篇文章主要介紹一位菲律賓學者對使用大型語言模型產生文章的想法,說明如何利用AI技術進行學術寫作,以及提示工程的重要性。文中介紹了許多在醫學領域的應用以及學術寫作中的多種提示類型。文章還提到了。本文將會給讀者帶來對AI在學術寫作領域的啟發。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 17中,介紹了大型語言模型 (LLM)世界裡面常用到的Token,現在我們來談談OpenAI的GPT模型如何利用Inference
Thumbnail
語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。 本文摘要自MIT 史隆管理評論,分析LLM 對工作帶來的影響。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
本篇文章主要介紹一位菲律賓學者對使用大型語言模型產生文章的想法,說明如何利用AI技術進行學術寫作,以及提示工程的重要性。文中介紹了許多在醫學領域的應用以及學術寫作中的多種提示類型。文章還提到了。本文將會給讀者帶來對AI在學術寫作領域的啟發。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。