大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。
雖然大型語言模型在理解和生成文本方面表現驚人,但它們並非真正理解語言,也缺乏世界運作的知識,模型可能學到偏見或生成不準確的信息。
除了在上篇介紹的 Prompt Design Pattern 可以協助我們在使用 LLM 時給予指示,以更好的執行我們期望中的工作之外,今天我們會介紹其他的技巧,確保生成的輸出擁有特定的品質,包括:
Chain of Thought Prompting 是一種與大型語言模型(LLM)互動的方式,旨在通過建立連貫的思維過程,引導模型生成更深入、更有邏輯結構的回答,通常都會提高 LLM 生成答案的準確度。
在使用 Chain of Thought Prompting 有幾個特點:
context, information, conditions
input:1
reasoning:1
output:1
input:2
reasoning:2
output:2
input:3
reasoning:3
output:3
input: your question?
One-shots 和 Few-shots 是一種強大的大型語言模型(LLM)使用框架。One-shots 和 Few-shots 指的是提供模型一些的範例就能夠學會新事物的能力。
這種學習方法的優勢在於其高效性和適應性。One-shots 和 Few-shots 更能夠迅速適應新的任務或情境,並在短時間內生成合理的回答。這種方式使得LLMs可以更靈活地應對各種問題,而不需要龐大的訓練數據集。
One-shots 和 Few-shots 的差別在於提供的範例數量為一個還是多個。
context, information, conditions
input:1
output:1
input:2
output:2
input:3
output:3
input: your question?
output:
ReAct Prompting是一種與大型語言模型(LLM)互動的框架,其中大型語言模型(LLMs)以交替的方式生成推理軌跡和特定任務的操作,以達到更精確和符合期望的回應。
提供範例並要求模型生成推理軌跡使能夠誘導 LLM 追踪和更新行動計劃。操作步驟甚至允許LLMs 與外部資源(如知識庫或環境)進行串接互動,檢索附加信息,從而產生更可靠和事實準確的回應。
Task:
Think:
Action: Use Tools (SEARCH WEB, Video, other tools)
Result:
Think:
Action: Use Tools (SEARCH WEB, Video, other tools)
Result:
Think:
Action: Use Tools (SEARCH WEB, Video, other tools)
Result:
---
Task: [your task]