[OpenCV[Python]cv2.countNonZero計算圖像中像素數量

閱讀時間約 2 分鐘

cv2.countNonZero 是 OpenCV 中的一個函數,用來計算二值圖像(或單通道圖像)中非零像素的數量。這個函數對於圖像處理中的許多操作非常有用,例如計算某個區域內的白色像素數量,從而幫助我們了解圖像的內容或進行進一步的分析。

使用範例

假設您有一個二值圖像,其中白色像素(值為 255)表示前景,黑色像素(值為 0)表示背景。您可以使用 cv2.countNonZero 來計算圖像中前景像素的數量。

import cv2
import numpy as np

# 創建一個示例二值圖像
image = np.array([[0, 0, 255, 255],
[0, 255, 255, 0],
[0, 255, 0, 0],
[255, 0, 0, 0]], dtype=np.uint8)

# 計算非零像素的數量
non_zero_count = cv2.countNonZero(image)

print("非零像素的數量:", non_zero_count)

解釋

  1. image 是一個 4x4 的二值圖像矩陣,其中 0 表示黑色像素,255 表示白色像素。
  2. cv2.countNonZero(image) 計算這個圖像中非零像素的數量。這裡 255 是非零值,所以這個函數將返回圖像中所有白色像素的數量。

在上面的例子中,圖像中共有 6 個非零像素,因此輸出會是:

非零像素的數量: 6

注意事項

  • cv2.countNonZero 只能用於單通道圖像(如灰度圖像或二值圖像)。如果您對多通道圖像(如 RGB 圖像)使用它,必須先將圖像轉換為灰度圖像處理單個通道
  • 此函數對於圖像分析中如計算某個區域的前景像素檢測物體、分割結果的評估等非常有用。


例如應用在計算OCR的面積


[OpenCV][Python]印出圖像中OCR面積及位置

avatar-img
121會員
204內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
本文延續上兩篇文章,新增印出圖像中OCR的面積及位置,與驗證連通域分析計算的面積是否正確,利用cv2.countNonZero來計算區域內非零的元素,因圖像OCR在連通域分析前就需轉換成黑底白字,剛好可利用此函數來計算面積。 [OpenCV][Python]印出圖像中文字的位置及高寬 結果圖
局部二值化(Local Thresholding)是一種影像處理技術,用來根據局部區域的像素值動態地將影像轉換為二值影像。這在處理光照不均勻的影像時特別有用。 與常見的兩種二值化(Otsu's與固定閥值)方法做比較。 實現局部二值化的範例: import cv2 import numpy
此文章延續以下這篇文章,實際測試增加或固定間隔的狀況下,是否可以增加辨識率 [OpenCV][Python]OCR分割及增加間隔[雙排文字] 此篇文章程式碼有修正上篇,OCR 特殊符號:會分割錯誤的問題。
在tesseract-ocr辨識應用中,建議的留白邊框為10pixl,若Label列印的太剛好,沒有任何的邊框時,就會辨識不到文字。 本文將帶大家如何讓圖像增加邊框。 結果圖 示意的比較誇張,我讓邊框增加100pixl,圖片大小原為211*80。
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
本文將說明如何去辨識出圖片文字​位置及高寬。
本文延續上兩篇文章,新增印出圖像中OCR的面積及位置,與驗證連通域分析計算的面積是否正確,利用cv2.countNonZero來計算區域內非零的元素,因圖像OCR在連通域分析前就需轉換成黑底白字,剛好可利用此函數來計算面積。 [OpenCV][Python]印出圖像中文字的位置及高寬 結果圖
局部二值化(Local Thresholding)是一種影像處理技術,用來根據局部區域的像素值動態地將影像轉換為二值影像。這在處理光照不均勻的影像時特別有用。 與常見的兩種二值化(Otsu's與固定閥值)方法做比較。 實現局部二值化的範例: import cv2 import numpy
此文章延續以下這篇文章,實際測試增加或固定間隔的狀況下,是否可以增加辨識率 [OpenCV][Python]OCR分割及增加間隔[雙排文字] 此篇文章程式碼有修正上篇,OCR 特殊符號:會分割錯誤的問題。
在tesseract-ocr辨識應用中,建議的留白邊框為10pixl,若Label列印的太剛好,沒有任何的邊框時,就會辨識不到文字。 本文將帶大家如何讓圖像增加邊框。 結果圖 示意的比較誇張,我讓邊框增加100pixl,圖片大小原為211*80。
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
本文將說明如何去辨識出圖片文字​位置及高寬。
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
在影像處理中,有時候我們只想特別關注某個感興趣的區域時,就是ROI的概念,擷取此範圍的圖像來做處理。 設定超過圖像邊界時就會報錯,本文主要介紹如何擷取影像的同時,避免設定錯誤造成程式崩潰的狀況。 擷取圖像示意圖 ROI程式範例 import cv2 import numpy as np
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
形態學操作在影像處理中有多種應用,特別是在處理二值化影像(黑白影像)。 在影像處理應用上,基本上都由侵蝕,膨脹這兩種方法,組合搭配而成。 常見應用場景 物體檢測與分割: 形態學操作可以用於增強或改善二值化影像中的物體邊界,使得物體的檢測和分割更加準確。
Thumbnail
本文將介紹影像的基本操作包括:影像的讀取、顯示、保存,以及一些常見的操作如裁剪、旋轉、縮放等。 語法介紹 讀取影像: cv2.imread函數的參數是影像的檔案路徑。讀取後的影像以NumPy的ndarray形式表示。
Thumbnail
OpenCV(Open Source Computer Vision Library)是一個開源的計算機視覺和影像處理庫,它提供了豐富的功能和工具,可用於開發各種視覺應用程式。 OpenCV最初是用C++編寫的,但它也提供了Python、Java等多種程式語言的接口,方便不同語言的開發者使用。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
[影像處理_OpenCV Python]使用Python撰寫影像處理功能,圖片遮罩或濾除掉不要的地方,旋轉圖片 以下範例將呈現影像處理三種不同的應用: 遮罩的實現 濾除 旋轉
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
在影像處理中,有時候我們只想特別關注某個感興趣的區域時,就是ROI的概念,擷取此範圍的圖像來做處理。 設定超過圖像邊界時就會報錯,本文主要介紹如何擷取影像的同時,避免設定錯誤造成程式崩潰的狀況。 擷取圖像示意圖 ROI程式範例 import cv2 import numpy as np
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
形態學操作在影像處理中有多種應用,特別是在處理二值化影像(黑白影像)。 在影像處理應用上,基本上都由侵蝕,膨脹這兩種方法,組合搭配而成。 常見應用場景 物體檢測與分割: 形態學操作可以用於增強或改善二值化影像中的物體邊界,使得物體的檢測和分割更加準確。
Thumbnail
本文將介紹影像的基本操作包括:影像的讀取、顯示、保存,以及一些常見的操作如裁剪、旋轉、縮放等。 語法介紹 讀取影像: cv2.imread函數的參數是影像的檔案路徑。讀取後的影像以NumPy的ndarray形式表示。
Thumbnail
OpenCV(Open Source Computer Vision Library)是一個開源的計算機視覺和影像處理庫,它提供了豐富的功能和工具,可用於開發各種視覺應用程式。 OpenCV最初是用C++編寫的,但它也提供了Python、Java等多種程式語言的接口,方便不同語言的開發者使用。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
[影像處理_OpenCV Python]使用Python撰寫影像處理功能,圖片遮罩或濾除掉不要的地方,旋轉圖片 以下範例將呈現影像處理三種不同的應用: 遮罩的實現 濾除 旋轉