[OpenCV][Python]判斷物件的形狀

閱讀時間約 1 分鐘

在OpenCV中可以利用 cv2.findContours 判斷物件的形狀,可以通過計算輪廓的某些特徵來實現的。

本文主要利用cv2.arcLength與cv2.approxPolyDP來判斷三角形,正方形,矩形。檢查是否為圓形,則用通過輪廓面積和邊界框面積的比率來判斷。

根據物件的頂點數與比例,可以粗略地判斷形狀。


結果圖

raw-image

利用 cv2.findContours 判斷物件的形狀,可以通過計算輪廓的某些特徵來實現的。常用的方法包括:

  1. 輪廓周長與面積比
    • 可以計算物件的輪廓周長(cv2.arcLength)和面積(cv2.contourArea),再比較兩者的比率來判斷形狀。不同的形狀具有不同的比率。
  2. 形狀近似 (Approximate Contour)
    • 使用 cv2.approxPolyDP 函數,可以將輪廓近似為多邊形。這樣可以判斷該物件是否是三角形、矩形或圓形:如果頂點數為 3,則是三角形。如果頂點數為 4,且邊長接近,則是矩形。如果頂點數超過 5,則可能是圓形。
  3. 圓形檢測
    • 可以使用輪廓面積與邊界框面積的比值來檢測圓形。如果輪廓面積與邊界框面積非常接近,則物件很可能是圓形。

程式範例

import cv2
import numpy as np

# 讀取圖像並轉換為灰階
image = cv2.imread('圖片路徑')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 使用cv2.findContours來檢測輪廓
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))
for contour in contours:
# 獲取輪廓近似
epsilon = 0.04 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)

# 使用頂點數判斷形狀
if len(approx) == 3:
shape = "Triangle"
elif len(approx) == 4:
# 檢測是否是矩形
(x, y, w, h) = cv2.boundingRect(approx)
aspect_ratio = float(w) / h
if 0.95 <= aspect_ratio <= 1.05:
shape = "Square"
else:
shape = "Rectangle"
else:
# 檢查是否為圓形,通過輪廓面積和邊界框面積的比率判斷
area = cv2.contourArea(contour)
circle_area = np.pi * (radius ** 2)
if 0.8 <= area / circle_area <= 1.2: # 比較輪廓面積與理論圓面積
shape = "Circle"
(x, y), radius = cv2.minEnclosingCircle(contour) #最小外接圓
else:
shape = "Unknown"

# 繪製輪廓和標註形狀
cv2.drawContours(image, [contour], -1, (0, 255, 0), 2)
x, y, w, h = cv2.boundingRect(contour) # 重新計算文字放置的位置
cv2.putText(image, shape, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

cv2.imshow('Shape detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()


判斷形狀部分

接下來的程式碼對每個輪廓進行處理和判斷:

  1. 遍歷每個輪廓
    for contour in contours:
  2. 獲取輪廓近似
    epsilon = 0.04 * cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, epsilon, True)
    • cv2.arcLength 計算輪廓的周長,並乘以 0.04 來獲得近似精度 epsilon。
    • cv2.approxPolyDP 用於簡化輪廓,將其近似為多邊形,True 表示封閉輪廓。
  3. 形狀判斷
    if len(approx) == 3:
    shape = "Triangle"
    elif len(approx) == 4:
    (x, y, w, h) = cv2.boundingRect(approx)
    aspect_ratio = float(w) / h
    if 0.95 <= aspect_ratio <= 1.05:
    shape = "Square"
    else:
    shape = "Rectangle"
    else:
    • 三角形:如果近似頂點數為 3,則判斷為三角形。
    • 四邊形:計算輪廓的邊界矩形 (x, y, w, h)。計算長寬比 aspect_ratio。如果長寬比接近 1(在 0.95 到 1.05 之間),則判斷為正方形;否則為矩形。
  4. 圓形判斷
    area = cv2.contourArea(contour)
    (x, y), radius = cv2.minEnclosingCircle(contour)
    circle_area = np.pi * (radius ** 2)
    if 0.8 <= area / circle_area <= 1.2:
    shape = "Circle"
    • 輪廓面積:使用 cv2.contourArea 計算當前輪廓的面積。
    • 最小外接圓:使用 cv2.minEnclosingCircle 計算能夠包圍該輪廓的最小圓的圓心 (x, y) 和半徑 radius。
    • 圓形判斷:計算圓的理論面積 circle_area,然後比較輪廓面積與理論圓面積的比率。如果比率在 0.8 到 1.2 之間,則判斷為圓形。
avatar-img
125會員
209內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
先前文章有使用連通域分析來印出物件的位置及高寬面積及達成物件定位等功能。 [OpenCV應用][Python]利用連通域分析達成物件定位 [OpenCV基礎][Python]connectedComponent連通域分析 [OpenCV][Python]印出圖像中OCR面積及位置 這次我們將
本文主要使用pyzbar 與pylibdmtx來讀取條碼,並用靜態方法將這兩個套件的讀碼功能包裝起來,因應不同需求,調用相對應的方法來讀取QR code,一維條碼,Data Matrix。最後再將讀到的條碼資料與框選條碼位子於原圖上。
這次我們使用影像差分處理,用來檢測圖像中的瑕疵。 首先定義瑕疵樣態,以下原圖為例,較淡的可能是錫油的反光,較亮的部分可能是瑕疵或者是刮痕造成,那我們的目的就是檢測出這些瑕疵或者是刮痕。
yield 在影像處理中也是蠻好用的,特別是當你需要處理大量影像或希望逐步處理影像時。它可以用來生成一個影像流,讓你能夠一次處理一張影像而不需要一次性加載所有影像進記憶體。 yield 是 Python 中的一個關鍵字,用於創建生成器(generator)。 生成器是一種特殊類型的迭代器,允許你
透過 Python 的 tracemalloc 模組來比較兩種方法在執行過程中佔用的記憶體大小。以下是兩者的記憶體佔用比較範例。 程式說明 tracemalloc.start():開始追踪記憶體分配。 tracemalloc.get_traced_memory():返回當前和峰值的記憶體使用量
現在有一推AI網站提供模糊圖片變高清的工具,Google關鍵字一下就一推了,例如MyEdit,Artguru等等。 Python的OpenCV有提供一個DnnSuperResImpl Class Reference,也可以做到這件事,就讓我們繼續往下看吧。 在OpenCV DnnSuperRe
先前文章有使用連通域分析來印出物件的位置及高寬面積及達成物件定位等功能。 [OpenCV應用][Python]利用連通域分析達成物件定位 [OpenCV基礎][Python]connectedComponent連通域分析 [OpenCV][Python]印出圖像中OCR面積及位置 這次我們將
本文主要使用pyzbar 與pylibdmtx來讀取條碼,並用靜態方法將這兩個套件的讀碼功能包裝起來,因應不同需求,調用相對應的方法來讀取QR code,一維條碼,Data Matrix。最後再將讀到的條碼資料與框選條碼位子於原圖上。
這次我們使用影像差分處理,用來檢測圖像中的瑕疵。 首先定義瑕疵樣態,以下原圖為例,較淡的可能是錫油的反光,較亮的部分可能是瑕疵或者是刮痕造成,那我們的目的就是檢測出這些瑕疵或者是刮痕。
yield 在影像處理中也是蠻好用的,特別是當你需要處理大量影像或希望逐步處理影像時。它可以用來生成一個影像流,讓你能夠一次處理一張影像而不需要一次性加載所有影像進記憶體。 yield 是 Python 中的一個關鍵字,用於創建生成器(generator)。 生成器是一種特殊類型的迭代器,允許你
透過 Python 的 tracemalloc 模組來比較兩種方法在執行過程中佔用的記憶體大小。以下是兩者的記憶體佔用比較範例。 程式說明 tracemalloc.start():開始追踪記憶體分配。 tracemalloc.get_traced_memory():返回當前和峰值的記憶體使用量
現在有一推AI網站提供模糊圖片變高清的工具,Google關鍵字一下就一推了,例如MyEdit,Artguru等等。 Python的OpenCV有提供一個DnnSuperResImpl Class Reference,也可以做到這件事,就讓我們繼續往下看吧。 在OpenCV DnnSuperRe
你可能也想看
Google News 追蹤
Thumbnail
Hi 我是 VK~ 在 8 月底寫完〈探索 AI 時代的知識革命:NotebookLM 如何顛覆學習和創作流程?〉後,有機會在 INSIDE POSSIBE 分享兩次「和 NotebookLM 協作如何改變我學習和創作」的主題,剛好最近也有在許多地方聊到關於 NotebookLM 等 AI 工具
Thumbnail
國泰CUBE App 整合外幣換匯、基金、證券等服務,提供簡便、低成本的美股定期定額投資解決方案。 5分鐘開戶、低投資門檻,幫助新手輕鬆進軍國際股市;提供人氣排行榜,讓投資人能夠掌握市場趨勢。
Thumbnail
這是張老師的第三本書,我想前二本應該也有很多朋友們都有讀過,我想絕對是受益良多,而這次在書名上就直接點出,著重在從投資的角度來切入
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
先上成果圖,如果是螺母的話就標註 is circle來區分。 簡單的用圖表加文字說明AOI辨識 在此文章的範例中: 影像前處理:色彩空間轉換(灰階) -> 二值化閥值處理 演算法:尋找輪廓 數值判斷:長,寬,面積,周長 圖片來源 程式碼 import cv2 import nu
Thumbnail
形態學操作在影像處理中有多種應用,特別是在處理二值化影像(黑白影像)。 在影像處理應用上,基本上都由侵蝕,膨脹這兩種方法,組合搭配而成。 常見應用場景 物體檢測與分割: 形態學操作可以用於增強或改善二值化影像中的物體邊界,使得物體的檢測和分割更加準確。
Thumbnail
本文介紹OpenCV中的SimpleBlobDetector用於檢測斑點或圓,以及其與霍夫轉換找圓方法的差異。透過程式範例和解析,講解檢測到的關鍵點和設定參數,並整理SimpleBlobDetector與霍夫轉換的不同。最後,探討不同的應用場景和參數調整。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
利用OPENCV,實現SIFT應用,尋找圖片中物件的旋轉角度 本文介紹主要提出SIFT提取關鍵角點的座標,由此算出物件的旋轉角度 程式功能介紹 : 導入待檢測圖及樣本圖,則會依照樣本圖中的物件為基準
Thumbnail
Hi 我是 VK~ 在 8 月底寫完〈探索 AI 時代的知識革命:NotebookLM 如何顛覆學習和創作流程?〉後,有機會在 INSIDE POSSIBE 分享兩次「和 NotebookLM 協作如何改變我學習和創作」的主題,剛好最近也有在許多地方聊到關於 NotebookLM 等 AI 工具
Thumbnail
國泰CUBE App 整合外幣換匯、基金、證券等服務,提供簡便、低成本的美股定期定額投資解決方案。 5分鐘開戶、低投資門檻,幫助新手輕鬆進軍國際股市;提供人氣排行榜,讓投資人能夠掌握市場趨勢。
Thumbnail
這是張老師的第三本書,我想前二本應該也有很多朋友們都有讀過,我想絕對是受益良多,而這次在書名上就直接點出,著重在從投資的角度來切入
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
Thumbnail
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
先上成果圖,如果是螺母的話就標註 is circle來區分。 簡單的用圖表加文字說明AOI辨識 在此文章的範例中: 影像前處理:色彩空間轉換(灰階) -> 二值化閥值處理 演算法:尋找輪廓 數值判斷:長,寬,面積,周長 圖片來源 程式碼 import cv2 import nu
Thumbnail
形態學操作在影像處理中有多種應用,特別是在處理二值化影像(黑白影像)。 在影像處理應用上,基本上都由侵蝕,膨脹這兩種方法,組合搭配而成。 常見應用場景 物體檢測與分割: 形態學操作可以用於增強或改善二值化影像中的物體邊界,使得物體的檢測和分割更加準確。
Thumbnail
本文介紹OpenCV中的SimpleBlobDetector用於檢測斑點或圓,以及其與霍夫轉換找圓方法的差異。透過程式範例和解析,講解檢測到的關鍵點和設定參數,並整理SimpleBlobDetector與霍夫轉換的不同。最後,探討不同的應用場景和參數調整。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
利用OPENCV,實現SIFT應用,尋找圖片中物件的旋轉角度 本文介紹主要提出SIFT提取關鍵角點的座標,由此算出物件的旋轉角度 程式功能介紹 : 導入待檢測圖及樣本圖,則會依照樣本圖中的物件為基準