Streamlit 與 Gradio:Python框架的深度比較

更新於 發佈於 閱讀時間約 5 分鐘

raw-image

raw-image

引言

在快速發展的數據科學和機器學習領域,有效的工具對於加快開發進程和改善結果至關重要。Streamlit和Gradio是兩個廣受歡迎的Python框架,它們提供了快速建構和分享數據科學應用的能力。本文旨在深入探討這兩個框架的特點、優勢、局限性以及最適合的使用場景。

raw-image

一、Streamlit:數據科學的交互式展示神器

概述

  • Streamlit是一個專為數據科學家和工程師設計的開源Python框架。它使用者可以輕鬆將數據分析腳本轉變為具有豐富交互性的網絡應用。其直觀的API和快速的渲染能力使得Streamlit成為展示數據和分析結果的首選工具。

用戶體驗和界面

  • Streamlit的用戶界面極為友好,支持各種小部件,如滑塊、文本輸入框、按鈕等,讓開發者能夠快速創建交互式元素。這些元素使終端用戶能夠輕鬆與應用程序互動,調整參數並實時查看結果。

raw-image

功能和應用場景

  • Streamlit特別適用於數據可視化和數據探索性分析。它與Matplotlib、Plotly等視覺化庫無縫集成,讓用戶可以創建引人入勝的數據故事和報告。此外,Streamlit還支持機器學習模型的快速原型設計和展示。

學習曲線和開發效率

  • Streamlit的學習曲線相對平緩,對Python初學者來說十分友好。其簡潔的API設計使得開發者可以在極短的時間內從概念驗證過渡到原型設計。

raw-image

二、Gradio:機器學習模型的直觀展示平台

raw-image

概述

  • Gradio作為一個開源Python框架,其主要設計初衷是為了使機器學習模型的部署和共享變得更簡單。透過Gradio,開發者可以快速創建一個交互式界面,讓用戶能夠輕鬆地與機器學習模型互動,這對於演示模型的能力和限制非常有幫助。

用戶體驗和界面

  • Gradio的界面設計注重於模型的交互性和直觀性。它支持多種輸入和輸出類型,包括圖像、音頻、文本等,這使得它尤其適合用於展示複雜的機器學習模型,如圖像分類、語音識別等。用戶可以直接在瀏覽器中上傳樣本、調整參數並即時看到模型的反應。

功能和應用場景

  • Gradio的主要優勢在於其對機器學習模型的展示和共享能力。它特別適用於那些需要向非技術人員展示模型工作原理和效果的場景,如教育、研究展示和初步的產品原型開發。此外,Gradio還提供了與Hugging Face Spaces的集成,進一步簡化了模型的共享和部署過程。

學習曲線和開發效率

  • 雖然Gradio的使用需要一定的機器學習背景知識,但其設計理念仍然是“易於使用”。開發者可以利用簡單的Python代碼快速構建和部署模型的交互界面。Gradio的API設計清晰,並且有大量的示例和文檔可供參考,這些都有助於降低學習門檻。

三、Streamlit與Gradio的對比分析

raw-image

在深入了解了Streamlit和Gradio後,我們可以從幾個關鍵維度進行比較:

用戶體驗和界面定制

  • Streamlit在用戶體驗設計上更為通用,適合廣泛的應用場景,而Gradio則更專注於展示和交互機器學習模型。Gradio的界面元素設計更貼近機器學習模型的具體需求。

功能性和靈活性

  • Streamlit在數據可視化和分析方面表現出色,而Gradio則在模型展示和原型開發方面有獨到之處。Streamlit更加靈活,支持廣泛的自定義和擴展,而Gradio則提供了更為專注的功能集合。

社區和生態系統

  • 兩者都擁有活躍的開發社區,但Streamlit在用戶基礎和生態系統方面稍顯成熟。這意味著對於Streamlit來說,用戶可能會找到更多的學習資源和社區支持。

四、AI工程師在企業內的角色轉換與框架學習的重要性

raw-image

在當今快速變化的科技領域,AI工程師的角色正經歷著顯著的轉變。從傳統的後端開發和算法研究,逐漸轉向更多涉及前端交互、用戶體驗設計以及跨部門溝通。在這樣的背景下,Streamlit和Gradio這兩個框架成為AI工程師必須掌握的重要工具,原因如下:

促進跨部門協作

  • 企業內部,AI工程師經常需要與非技術部門合作,例如市場、產品和管理團隊。通過使用Streamlit或Gradio,工程師可以快速創建出易於理解和操作的應用,這有助於非技術團隊更好地理解和評估AI模型的實際應用和業務價值。

增強產品原型開發

  • 在產品開發的早期階段,快速原型的建立對於獲取用戶反饋和迭代改進至關重要。Streamlit和Gradio允許AI工程師快速構建和展示原型,這不僅加快了開發進程,還有助於收集初步用戶反饋,指導後續的產品迭代。

強化數據可視化與溝通

  • 在數據驅動的決策過程中,將複雜的數據和分析結果以直觀的方式呈現給決策者極為重要。Streamlit在數據可視化方面的優勢使其成為展示數據洞察的理想工具。同時,Gradio在展示機器學習模型的輸入與輸出方面的直觀性,有助於向非專業人士解釋模型的工作原理。

提高開發效率

  • 在快節奏的企業環境中,開發效率至關重要。Streamlit和Gradio的高效性能和簡便的使用方式,使得AI工程師可以在較短的時間內完成更多的工作,從而快速響應市場和業務的需求。

隨著AI技術在各行各業的廣泛應用,AI工程師的角色正在逐步轉變,更多地涉及前端開發、用戶體驗和跨部門溝通。在這樣的趨勢下,掌握如Streamlit和Gradio等工具不僅是提升個人技能的需要,更是適應行業變化、促進企業內部協作和提高產品開發效率的重要手段。

結論

選擇Streamlit還是Gradio,取決於具體的應用需求和背景。對於那些需要快速建立數據分析和可視化應用的用戶來說,Streamlit是一個絕佳的選擇。而對於希望展示和共享機器學習模型的用戶,Gradio則更加適合。

相關文章:

使用 Streamlit 製作3D 地圖資料科學APP — 1

Streamlit 製作第一個Data APP

作者:黃翊鈜 Roy Hwang

經歷:ML engineer , AI engineer

avatar-img
1會員
24內容數
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Google Brain 開發了 Tensor2Tensor(T2T),讓深度學習開發變得更加容易,T2T 是 TensorFlow 的擴展,包含深度學習模型庫,其中包
Thumbnail
Python資料視覺化在數據分析中扮演關鍵角色,透過視覺化捕捉數據模式、趨勢和異常,透過Matplotlib等工具創建專業圖表變相對簡單和高效。
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
延續上一篇訓練GAM模型,這次我們讓神經網路更多層更複雜一點,來看訓練生成的圖片是否效果會更好。 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 資料集分割處理的部分在延續上篇文章,從第五點開始後修改即可,前面都一樣 訓練過程,比較圖 是不是CNN的效果比MLP還要好,
這篇文章介紹了Pythonic API在AI模型的推理和部署以及個人化服務方面的性能優勢,以及與商業模式、個人化Knowledge Graph和GenAI的集成。同時探討了Pythonic編程文化、Python效能、API商業模式和人工智慧個人化的相關問題。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
這個頻道將提供以下服務: 深入介紹各種Machine Learning技術 深入介紹各種Deep Learning技術 深入介紹各種Reinforcement Learning技術 深入介紹Probabilistic Graphical Model技術 不定時提供讀書筆記 讓我們一起在未
Thumbnail
前言 上一篇討論到如何訓練出模型,此篇將說明Streamlit建立的簡單Web應用程式的解說 Streamlit網頁App_貓狗辨識 連結 程式碼Github連結 [機器學習]CNN學習MNIST 手寫英文字母資料,用網頁展現成果_模型訓練篇 如何連動github與stramlit可以參考
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Google Brain 開發了 Tensor2Tensor(T2T),讓深度學習開發變得更加容易,T2T 是 TensorFlow 的擴展,包含深度學習模型庫,其中包
Thumbnail
Python資料視覺化在數據分析中扮演關鍵角色,透過視覺化捕捉數據模式、趨勢和異常,透過Matplotlib等工具創建專業圖表變相對簡單和高效。
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
延續上一篇訓練GAM模型,這次我們讓神經網路更多層更複雜一點,來看訓練生成的圖片是否效果會更好。 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 資料集分割處理的部分在延續上篇文章,從第五點開始後修改即可,前面都一樣 訓練過程,比較圖 是不是CNN的效果比MLP還要好,
這篇文章介紹了Pythonic API在AI模型的推理和部署以及個人化服務方面的性能優勢,以及與商業模式、個人化Knowledge Graph和GenAI的集成。同時探討了Pythonic編程文化、Python效能、API商業模式和人工智慧個人化的相關問題。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
這個頻道將提供以下服務: 深入介紹各種Machine Learning技術 深入介紹各種Deep Learning技術 深入介紹各種Reinforcement Learning技術 深入介紹Probabilistic Graphical Model技術 不定時提供讀書筆記 讓我們一起在未
Thumbnail
前言 上一篇討論到如何訓練出模型,此篇將說明Streamlit建立的簡單Web應用程式的解說 Streamlit網頁App_貓狗辨識 連結 程式碼Github連結 [機器學習]CNN學習MNIST 手寫英文字母資料,用網頁展現成果_模型訓練篇 如何連動github與stramlit可以參考