ML Infra 一大戰場 - 分散式訓練

閱讀時間約 4 分鐘

5 年前在做 ML System 研究時,我們看見 ML Job 所需要的算力需求,已經超過硬體成長的 Moore’s Law。有鑑於此,如何有效的分散 ML Workload,便是當年的最大課題。

5 年後的現在,ML 進入 LLM 時代。傳統 ML 的算力需求成長,是每兩年 8 倍。LLM 的算力需求成長,是每兩年 275 倍。因此,研究這個問題的急迫程度,可說是提高了數十倍 XD

上次我們已經聊過 On-Device AI ,這次我們將轉向 Server Side,聊聊我們該怎麼分散化 ML Jobs。


分散式的各種切法


講到分散式訓練 ( Distributed Training ),直覺就有該怎麼分、以及該怎麼合。

廣義上來說,分法有兩種:Data Parallelism 與 Model Parallelism。

Data Parallelism 是將 Dataset 本身切開,一部分 data 給 device 1 跑、另一部分給 device 2 跑。

跑完以後,各自在將 gradient 互相分享,更新參數,完成一次 batch run。

Model Parallelism 則會將 Model 本身拆開。比如說,一個 6 layer 的 model ,前 3 給 device 1 跑、後 3 給 device 2 跑。


單純切還是太笨了

Data Parallelism 的合併問題

然而 Data Parallelism 切完以後,就有如何分享成果、 Gradient Aggregation 的問題。

基本上,有分為 Synchronize 的方法及 Asynchronize 的方法。

Synchronize 亦指,等全部 device train 完以後,再一起 sync。

當然,只要任一個 device 跑得特別慢,全部就要停下來等他。


From Tensorflow

From Tensorflow

Asynchronize 意指,有一個共享的 Parameter Server,負責收集大家的 gradient,並和大家溝通。

各 Device 將不再互等,只要跟 Parameter Server 一直 update 大家的成果即可。

當然,每個 Device 跑速不同,收集到的 gradient 可能不精確,準確度不一定比較好。

Model Parallelism 的相依問題

Model Parallelism 也有相依性的問題。簡單的說,如果 Device 1 還沒 train 玩,Device 2 只能乾等。

因此,近年來的 Pipeline Parallelism,便為了解決這問題。

Chimera: Efficient Training Large-Scale Neural Networks with Bidirectional Pipelines》便提出,如果我們能將各 Model、各 batch run,以相互交叉的方式排序,便可以極大化提升 device 使用率。

From paper: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines

From paper: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines


跨越節點

上述平行化方法,我們都只討論 Model Training 都只在一個機器上發生。

現今 LLM 的世代,模型在大多數情況,都擠不進一台機器,必須多台機器、甚至 multiple clusters。

Topology Scheduling 便成為最大課題。當 communication 已經 over network,就要考慮 network 可能斷、network 有 hotspot 等因素。

實務上,學界也會針對 Intra-node(一個節點內)、Inter-node(多個節點)分開討論、甚至一起討論。

還有更多

上述大多只提及 Model Training 的平行化方法。實際上,還有 Serving、甚至是多重 workloads 的角度可以切入,也會在這個系列中持續探索,非常歡迎大家追蹤這個沙龍,就不會錯過任何文章!

旅美工程師,閒談矽谷與北美的各種樣貌。 #矽谷 #工程師生涯 #旅行 #軟體工程 #個人成長 Medium: medium.com/mencher-publication
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
2023 年的 AI 革命主旋律,看似就圍繞 ChatGPT,或是 Sora 這種生成 AI 影片的 GenAI 。事實上,和人們日常息息相關的氣象預報,在 2023 年也同樣掀起 AI 革命,並對全球氣象預報產生顯著的影響。
2024 年,AI Boom 的第二年,我們總算可以撥開 AI 迷霧,逐一聊聊大型語言模型 (LLM) 的實際應用。On-Device AI 正快速進化,Google Gemini Nano 正式部署上手機,Apple 也發布最新論文彎道超車,改變了手機 AI 的未來發展。
2023 年的 AI 革命主旋律,看似就圍繞 ChatGPT,或是 Sora 這種生成 AI 影片的 GenAI 。事實上,和人們日常息息相關的氣象預報,在 2023 年也同樣掀起 AI 革命,並對全球氣象預報產生顯著的影響。
2024 年,AI Boom 的第二年,我們總算可以撥開 AI 迷霧,逐一聊聊大型語言模型 (LLM) 的實際應用。On-Device AI 正快速進化,Google Gemini Nano 正式部署上手機,Apple 也發布最新論文彎道超車,改變了手機 AI 的未來發展。
你可能也想看
Google News 追蹤
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Trainin
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 28中闡述了一些AI專業者的未來發展方向,現在我們更細分: 人工智慧專家在人工智慧某一領域擁有專業知識或技能,包含微調模型、維護和支
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer模型驅動的人工智慧正在將無所不在的一切連接起來,機器直接與其他機器通訊,人工智慧驅動的物聯網訊號無需人工干預即可觸發自動決策。 自然語言處理演算法
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Trainin
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經完成: Single-Head Attention 數學說明:AI說書 - 從0開始 - 52 Multi-Head Attention 數學說明:
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 28中闡述了一些AI專業者的未來發展方向,現在我們更細分: 人工智慧專家在人工智慧某一領域擁有專業知識或技能,包含微調模型、維護和支
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer模型驅動的人工智慧正在將無所不在的一切連接起來,機器直接與其他機器通訊,人工智慧驅動的物聯網訊號無需人工干預即可觸發自動決策。 自然語言處理演算法