avatar-img

三分鐘學AI

282免費公開

這頻道將提供三分鐘以內長度的AI知識,讓你一天學一點AI知識,每天進步一點

全部內容
免費與付費
最新發佈優先
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 99 到 AI說書 - 從0開始 - 121,我們完成書籍:Transformers for Natural Language Proc
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 120 中使用 Google Gemini 將一段英文翻譯成法文,那我不是法文專業者,怎麼知道翻譯的好不好呢? 我可以使用 B
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 現在我們來看看 Google Gemini (https://gemini.google.com/ to start a dialog) 的能力: 回答如下:
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 118 安裝完 googletrans,現在示範如何從英文翻譯成法文: import googletrans translator
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將實作 googletrans,googletrans 函式庫是 Google Translate AJAX (Asynchronous JavaScript an
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
Thumbnail
煮播阿本桑-avatar-img
2024/08/07
這個有難,哈XD發現你也是日更鬥士,先送顆愛心先。
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Google 翻譯 (https://translate.google.com/) 提供了一個隨時可用的官方翻譯介面,Google 在其翻譯演算法中也擁有 Transf
Thumbnail
/ℬ./-avatar-img
2024/08/06
有的使用翻譯成該國語言,中文的結果也會有點不順~但對於能夠自動偵測(這個功能)~非常滿意!😊
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型。 現在我們來載入預訓練權重,預訓練的權重包含 Transformer 的智慧
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 113 中安裝了 Google Trax,現在來建立 Transformer 模型: model = trax,models.
Thumbnail
月影紗💫-avatar-img
2024/08/04
雖然我不會寫程式,但我要特別留言謝謝Learn爺!自從發現你的格子,就像挖到寶,我家兩個男生睡前都追你的文,我則是學習你建議的AI對話模式,自學一些語文或社會學。跟AI討論主題,加速學習,真的很受用。謝謝你經營這麼棒的園地!我可能不會每次留言,但我會幫你點愛心。
LearnAI-avatar-img
發文者
2024/08/05
好感動,我還以為沒人在看我的頻道,哈哈哈 :D
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Google Brain 開發了 Tensor2Tensor(T2T),讓深度學習開發變得更加容易,T2T 是 TensorFlow 的擴展,包含深度學習模型庫,其中包
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在 AI說書 - 從0開始 - 110 介紹了 BLEU 又在 AI說書 - 從0開始 - 111 介紹了 Smoothing 方法,現在我們來看怎麼何在一起:
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在 AI說書 - 從0開始 - 110,介紹了 BLEU 使用方法與公式,現在我們再跑一個例子: #Example 3 reference = [['the
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下提供範例說明 BLEU 怎麼使用: #Example 1 reference = [['the', 'cat', 'likes', 'milk'], ['cat
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們從 AI說書 - 從0開始 - 103 至 AI說書 - 從0開始 - 105 的努力,已經完成資料集前處理,現在需要定義一個函數來加載這些清理過的數據集,並在預處
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 103 所載入的資料集,現在要來進行資料前置處理,首先載入需要的依賴: import pickle from pickle impo
avatar-avatar
LearnAI
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 102 說要窺探 WMT 資料集,以下著手資料集下載程式: import urllib.request # Define the