AI說書 - 從0開始 - 111 | Smoothing 方法

更新於 發佈於 閱讀時間約 1 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


回顧我們在 AI說書 - 從0開始 - 110,介紹了 BLEU 使用方法與公式,現在我們再跑一個例子:

#Example 3 
reference = [['the', 'cat', 'likes', 'milk']]
candidate = ['the', 'cat', 'enjoys','milk']
score = sentence_bleu(reference, candidate)
print('Example 3', score)


跑出以下結果:

raw-image


關鍵問題出在:3-Gram 沒有重疊,它建議的選項出現:SmoothingFunction(),我們來看看 Smoothing 是什麼意思。


Chen 與 Cherry 於 2014 年提出一種 Smoothing 方法,Label Smoothing 是一種非常有效的方法,可以提高 Transformer 模型在訓練階段的表現,舉例來說:


我要預測 [mask] 這個字在句子 The cat [mask] milk 中為何,那我的候選名單可能為:

raw-image

而 Softmax 可能為:

raw-image

又 One-Hot 為:

raw-image

這樣一來,Label Smoothing 的運作方式為:

  • 給定一個 Epsilon 參數,假設為 0.25
  • 判斷 Softmax 維度,此例子為 K = 4
  • One-Hot 中為 0 者,增加為 0 + Epsilon / (K - 1)
  • One-Hot 中為 1 者,減少為 1 - Epsilon
avatar-img
199會員
513內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!

































































Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下提供範例說明 BLEU 怎麼使用: #Example 1 reference = [['the', 'cat', 'likes', 'milk'], ['cat
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - Prompt Engineering - 64 | 引導式對話,以下繼續 Promp
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - Prompt Engineering - 63 | 引導式對話,以下繼續 Promp
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如果您對自動模擬中的細節不滿意,您可以使用一系列引導 Prompt 將對話引導至您喜歡的方式,以下範例示
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下提供範例說明 BLEU 怎麼使用: #Example 1 reference = [['the', 'cat', 'likes', 'milk'], ['cat
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - Prompt Engineering - 64 | 引導式對話,以下繼續 Promp
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - Prompt Engineering - 63 | 引導式對話,以下繼續 Promp
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如果您對自動模擬中的細節不滿意,您可以使用一系列引導 Prompt 將對話引導至您喜歡的方式,以下範例示
你可能也想看
Google News 追蹤
Thumbnail
本系列將討論 LLM 時代中,分散 ML workload 的各種方法。作為系列的第一篇,我們將提及 High-level 的概論,譬如分散式訓練的各種切法、Model Parallelism 的相依問題,以及改善 Network Topology 等課題。
Thumbnail
這是一篇介紹如何使用AI來生成貓貓圖片的文章,作者透過幾個軟體的使用經驗,分享了AI生成圖片的效果以及注意事項。文章內容豐富,並且有各種關鍵字和描述,可以吸引潛在讀者。
Thumbnail
在上一週的節目中,我們一共學到了3組英語之中含有smooth這個常用單字的特別用法,而這3組片語中的smooth皆為形容詞的用法。在本週的節目中,我們則要聚焦在動詞用法的smooth,也希望能將含有smooth一字的特殊片語做一個更完整的介紹。
Thumbnail
當您要形容一樣東西很光滑或很勻稱時,您會想到哪一個英文單字呢?我想大部份人第一個聯規到的一定是smooth這個字。而smooth除了光滑之外,還有順暢的,平穩的,香醇的,圓滑的和能言善道的等等意思。今天,我們就來聊一聊英語之中含有smooth這個常用字的一些有趣用法,也希望大家都能夠喜歡。
Thumbnail
這一節的標題是A Smoother Approach with Perlin Noise,介紹由Ken Perlin所開發的Perlin noise,及其應用方式。
Thumbnail
在AI時代中,GPT技術正在改變我們的生活。然而,SLM(小型語言模型)也開始受到關注,具有更高的效率、更低的資源消耗和更快的響應速度。這篇文章將討論LLM和SLM的比較、SLM的應用場景以及未來的發展趨勢。
Thumbnail
不知道大家會不會有這種感覺,在使用現今的一些預訓練模型時,雖然好用,但是實際在場域部屬時總感覺殺雞焉用牛刀,實際使用下去後續又沒有時間讓你去優化它,只好將錯就錯反正能用的想法持續使用,現在有個不錯的方法讓你在一開始就可以用相對低廉的成本去優化這個模型,讓後續使用不再懊悔。
本文介紹了在深度學習中使用Batch Normalization來解決error surface複雜性的問題。通過特徵歸一化來加速收斂速度和訓練順利程度。同時,也提到了在測試階段使用moving average計算平均值和標準差的方法。
機器學習是什麼? 簡單來說,機器學習就是訓練機器尋找Function的一段過程,而這個Function可以幫助我們解決我們遇到的問題,或是幫助我們
Thumbnail
介紹: 類似於chatGPT,openAI為他們技術指導,而他們將它延伸利用,主要有三部分 1、AI顧問 2、技術分析 3、交易 目前交易功能還無法使用,技術分析還蠻酷的,不過只能分析1小時線,
Thumbnail
本系列將討論 LLM 時代中,分散 ML workload 的各種方法。作為系列的第一篇,我們將提及 High-level 的概論,譬如分散式訓練的各種切法、Model Parallelism 的相依問題,以及改善 Network Topology 等課題。
Thumbnail
這是一篇介紹如何使用AI來生成貓貓圖片的文章,作者透過幾個軟體的使用經驗,分享了AI生成圖片的效果以及注意事項。文章內容豐富,並且有各種關鍵字和描述,可以吸引潛在讀者。
Thumbnail
在上一週的節目中,我們一共學到了3組英語之中含有smooth這個常用單字的特別用法,而這3組片語中的smooth皆為形容詞的用法。在本週的節目中,我們則要聚焦在動詞用法的smooth,也希望能將含有smooth一字的特殊片語做一個更完整的介紹。
Thumbnail
當您要形容一樣東西很光滑或很勻稱時,您會想到哪一個英文單字呢?我想大部份人第一個聯規到的一定是smooth這個字。而smooth除了光滑之外,還有順暢的,平穩的,香醇的,圓滑的和能言善道的等等意思。今天,我們就來聊一聊英語之中含有smooth這個常用字的一些有趣用法,也希望大家都能夠喜歡。
Thumbnail
這一節的標題是A Smoother Approach with Perlin Noise,介紹由Ken Perlin所開發的Perlin noise,及其應用方式。
Thumbnail
在AI時代中,GPT技術正在改變我們的生活。然而,SLM(小型語言模型)也開始受到關注,具有更高的效率、更低的資源消耗和更快的響應速度。這篇文章將討論LLM和SLM的比較、SLM的應用場景以及未來的發展趨勢。
Thumbnail
不知道大家會不會有這種感覺,在使用現今的一些預訓練模型時,雖然好用,但是實際在場域部屬時總感覺殺雞焉用牛刀,實際使用下去後續又沒有時間讓你去優化它,只好將錯就錯反正能用的想法持續使用,現在有個不錯的方法讓你在一開始就可以用相對低廉的成本去優化這個模型,讓後續使用不再懊悔。
本文介紹了在深度學習中使用Batch Normalization來解決error surface複雜性的問題。通過特徵歸一化來加速收斂速度和訓練順利程度。同時,也提到了在測試階段使用moving average計算平均值和標準差的方法。
機器學習是什麼? 簡單來說,機器學習就是訓練機器尋找Function的一段過程,而這個Function可以幫助我們解決我們遇到的問題,或是幫助我們
Thumbnail
介紹: 類似於chatGPT,openAI為他們技術指導,而他們將它延伸利用,主要有三部分 1、AI顧問 2、技術分析 3、交易 目前交易功能還無法使用,技術分析還蠻酷的,不過只能分析1小時線,