GAN

含有「GAN」共 8 篇內容
全部內容
發佈日期由新至舊
本文介紹的論文是IBM和摩根大通的聯合研究論文《Quantum Generative Adversarial Networks for Learning and Loading Random Distributions》,該論文使用量子機器學習來以少量閘重現任意機率分佈。
本文以烘焙蛋糕的過程來解釋生成對抗網路(GAN)的原理。生成器負責創造作品,如圖片、音樂或文字,而判別器則評估作品真實性與品質。兩者在不斷的對抗學習中進化,最終生成器能創造出超乎想像的真實內容,並具有廣泛應用,包括生成假照片、修復老照片、創作藝術作品及幫助產品設計等,展示了GAN技術的潛力與可能性。
Thumbnail
本文將延續上一篇文章,經由訓練好的GAN模型中的生成器來生成圖片 [深度學習][Python]訓練MLP的GAN模型來生成圖片_訓練篇 [深度學習][Python]訓練CNN的GAN模型來生成圖片_訓練篇 相較之下CNN的GAN生成的效果比較好,但模型也相對比較複雜,訓練時間花的也比較
Thumbnail
本文主要介紹,如何利用GAN生成對抗網路來訓練生成圖片。 利用tensorflow,中的keras來建立生成器及鑑別器互相競爭訓練,最後利用訓練好的生成器來生成圖片。 GAN生成對抗網路的介紹 它由生成網路(Generator Network)和鑑別網路(Discriminator Netwo
Thumbnail
現AI時代我們常見的生成影像是如何製作出來的,或許你已經開始熟悉AI“假臉”的風格。但由于現在網路上大量流傳的多數是以DALL-E或是Stable Diffiusion+幾個特定的LoRA所生成的結果。以至於人們越來越有識別真假照片的能力。但或許你不知道的是,早在幾年前純粹用GAN生成技術所產出的人
Thumbnail
ONPRO UC-2P01CC MAX 氮化鎵GaN 48W 超急速PD充電器是一款採用先進的氮化鎵技術的高效能充電器,能夠提供最高48W的輸出功率,支援PD 3.0和QC 3.0等多種快充協議,適用於各種智慧型手機、平板電腦、筆記型電腦等設備。該充電器具有超薄的設計,體積小巧,攜帶方便,並且具有過
Thumbnail
  卷積神經網路(Convolutional Neural Networks,CNN),其應用包括影像辨識、自然語言處理(NLP)等領域。若能從其發展至今的脈絡開始了解,必定可以更進一步地理解專案的想法,將該技術掌握得更得心應手。以下就其發展和結構分別詳細說明。 1. LeNet
Thumbnail
付費限定
在影像生成的領域中,其中一個富有挑戰的是影像對影像的轉譯問題。該問題包括了 paired 和 unpaired 兩個子問題。在本文中,會先提 paired 問題的 pix2pix。unpaired 的問題則會談到 cross consistency, Normalization 和 attentio
Thumbnail