有關數學的100個觀念

更新於 發佈於 閱讀時間約 1 分鐘
作者:邢豔
二十進位的數字系統:數字以點(.)代表1,橫棒(—)代表5,碑文顯示他們有時還會用到億。--瑪雅人發展零的概念。
0 是唯一非正非負的整數。
畢達哥拉斯學派認為1是一個基點,是所有運算的基礎。
2是二元論的代表,象徵複合,又可表示分裂,既吸引又排斥,既融合又矛盾。
為什麼會看到廣告
一本書少則幾十頁,多則上百頁。每星期一這裡簡單一本書簡單幾句話讓你快速閱讀一本書,成為生活中的新食糧。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
黃阿瑪的後宮生活:被貓咪包圍的日子(試閱連結 22頁) 196頁 作者:黃阿瑪、志銘與狸貓 誰都無法取代誰,所以, 最好誰也別從誰的身上尋找誰的影子。 我們有什麼資格去要求貓咪要十全十美?
好關係是麻煩出來的(試閱連結 9頁)  78頁 作者:格子珊 你麻煩別人,也要允許別人麻煩你。 生活中,那些日子過的最滋潤的人, 往往是熱衷於麻煩別人的人
幸福丹麥流:HYGGE!每一天愉悅舒心的生活提案  (試閱連結) 作者:夏洛特.亞伯拉罕(Charlotte Abrahams) 和善待人 幸福感建立在『自在』與『自由』,不被世俗的價值觀所框住,... 不被工作與《消費主義》綁架。
窮查理的普通常識(增修版) (試閱連結)   632頁 作者:查理‧蒙格 避免失敗,建議逆向思考。 我一輩子想要的就是融入生活,而不希望自己被孤立。 怎麼樣人生才會變窮?就試著不要照著做
老公的情書  (google 試閱連結)    194 頁 作者:楊春吉、胡綺萱 熱心公益又善於法律問題的楊春吉先生在婚姻的20年過程中,是怎麼和愛妻保持暖暖的愛情? 做人不要太認真,舒服就好。 愛情不要太嚴肅,溫馨平實就好。
60個突破關係困境技巧, 從內到外提升自信, 輕鬆擺脫社交恐懼症。
黃阿瑪的後宮生活:被貓咪包圍的日子(試閱連結 22頁) 196頁 作者:黃阿瑪、志銘與狸貓 誰都無法取代誰,所以, 最好誰也別從誰的身上尋找誰的影子。 我們有什麼資格去要求貓咪要十全十美?
好關係是麻煩出來的(試閱連結 9頁)  78頁 作者:格子珊 你麻煩別人,也要允許別人麻煩你。 生活中,那些日子過的最滋潤的人, 往往是熱衷於麻煩別人的人
幸福丹麥流:HYGGE!每一天愉悅舒心的生活提案  (試閱連結) 作者:夏洛特.亞伯拉罕(Charlotte Abrahams) 和善待人 幸福感建立在『自在』與『自由』,不被世俗的價值觀所框住,... 不被工作與《消費主義》綁架。
窮查理的普通常識(增修版) (試閱連結)   632頁 作者:查理‧蒙格 避免失敗,建議逆向思考。 我一輩子想要的就是融入生活,而不希望自己被孤立。 怎麼樣人生才會變窮?就試著不要照著做
老公的情書  (google 試閱連結)    194 頁 作者:楊春吉、胡綺萱 熱心公益又善於法律問題的楊春吉先生在婚姻的20年過程中,是怎麼和愛妻保持暖暖的愛情? 做人不要太認真,舒服就好。 愛情不要太嚴肅,溫馨平實就好。
60個突破關係困境技巧, 從內到外提升自信, 輕鬆擺脫社交恐懼症。
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 九 為能清晰說明,我們給範疇次序標號 (即置頂的 1-5),使整個推導過程看似一個矩陣﹕ 1.4.1_5.3 艾杜凱維茨的推導矩陣 第 2 行的 gr:1 (C1, C2) 是說 gr 用於第 1 行的 C
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 四 牛頓的「流數」不久便淡出歷史的舞台,後來的數學工作者選擇了萊布尼茲比較抽象的「函數」。 公元1673年,萊布尼茲在一篇名為〈觸線
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 一 踏入公元十七世紀,微積分逐漸成形,而主要的貢獻來自德國數學家及哲學家萊布尼茲和英國數學家及物理學家牛頓。27 但兩人發展微
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 二 這一百廿一頁其實只是第一版的一個附錄,名為「幾何學」。除了坐標系統的引進,笛卡兒明顯地結合了幾何和代數的語言。事實上,所謂「解析幾何」就是用代數方法表述被
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 一 因此打從輪廓的浮現,萌牙狀態的函數概念是一個幾何圖象。 有趣的是,兩個世紀之後,即公元十六世紀,歐洲文藝復興如日中天,法國數學家及哲學家勒內‧笛卡兒承襲
Thumbnail
這篇文章,會帶著大家複習以前學過的二進位DP框架, 並且以0~N的整數有幾個bit1,有幾個bit0的概念為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 常見的考法 請問整數k有幾個bit1? 有幾個bit0? 請問整數0到整數N分別各有幾個bit1? 有幾個
今天,很難得地沒有情緒,思維也一片空白。所以就不去批評什麼人事物,來談談我從歷史學得的一些假設跟可能! 干支不是玄學專用的,就很單純的是一種算術應用,十進位法,跟十二進位法。 世界各個文明都是單一進位法,而且是十進位法,畢竟十根手指頭就在那裡。為什麼中國人會用到兩種進位法呢? 應該是當初有一個
Thumbnail
數學至理與淨土莊嚴(象山慶24.3.17)     有人說:       數學裡有個美好的詞,叫「求和」;有個遺憾的詞,叫「無解」;有個霸氣的詞,叫「有且僅有」;有個悲傷的詞,叫「無限接近卻永不相交」。還有個模糊的詞叫「約等於」,遙遠的詞叫「未知數」,單調的詞叫「無限循環」,堅定的詞叫「絕對值」
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
1.0 從函數到函算語法 1.4 函算語法 1.4.1 語法範疇理論導論 九 為能清晰說明,我們給範疇次序標號 (即置頂的 1-5),使整個推導過程看似一個矩陣﹕ 1.4.1_5.3 艾杜凱維茨的推導矩陣 第 2 行的 gr:1 (C1, C2) 是說 gr 用於第 1 行的 C
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 1.2.6 熱的傳導 1.2.7 十九世紀的尾聲 三 必須說一下波希米亞數學家/邏輯學家/哲學家/神學
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 1.2.5 弦的振動 五 特朗貝爾依循當時數學界對函數的普遍理解,視「函數」為任一分析式。 但這時的歐拉宣稱函數不必是正常意義下的
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 四 牛頓的「流數」不久便淡出歷史的舞台,後來的數學工作者選擇了萊布尼茲比較抽象的「函數」。 公元1673年,萊布尼茲在一篇名為〈觸線
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法 一 踏入公元十七世紀,微積分逐漸成形,而主要的貢獻來自德國數學家及哲學家萊布尼茲和英國數學家及物理學家牛頓。27 但兩人發展微
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 二 這一百廿一頁其實只是第一版的一個附錄,名為「幾何學」。除了坐標系統的引進,笛卡兒明顯地結合了幾何和代數的語言。事實上,所謂「解析幾何」就是用代數方法表述被
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 一 因此打從輪廓的浮現,萌牙狀態的函數概念是一個幾何圖象。 有趣的是,兩個世紀之後,即公元十六世紀,歐洲文藝復興如日中天,法國數學家及哲學家勒內‧笛卡兒承襲
Thumbnail
這篇文章,會帶著大家複習以前學過的二進位DP框架, 並且以0~N的整數有幾個bit1,有幾個bit0的概念為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 常見的考法 請問整數k有幾個bit1? 有幾個bit0? 請問整數0到整數N分別各有幾個bit1? 有幾個
今天,很難得地沒有情緒,思維也一片空白。所以就不去批評什麼人事物,來談談我從歷史學得的一些假設跟可能! 干支不是玄學專用的,就很單純的是一種算術應用,十進位法,跟十二進位法。 世界各個文明都是單一進位法,而且是十進位法,畢竟十根手指頭就在那裡。為什麼中國人會用到兩種進位法呢? 應該是當初有一個
Thumbnail
數學至理與淨土莊嚴(象山慶24.3.17)     有人說:       數學裡有個美好的詞,叫「求和」;有個遺憾的詞,叫「無解」;有個霸氣的詞,叫「有且僅有」;有個悲傷的詞,叫「無限接近卻永不相交」。還有個模糊的詞叫「約等於」,遙遠的詞叫「未知數」,單調的詞叫「無限循環」,堅定的詞叫「絕對值」