從生活認識微積分(十二)函數微分的幾何意義(1)

更新於 2019/08/09閱讀時間約 3 分鐘
作者:nick kayton,圖片來源:https://www.pexels.com/photo/mountain-covered-with-trees-and-snow-876338/,免費授權使用
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。

(一)代數與幾何問題本為一體

  微分的定義具有豐富的幾何意義,這可以從「代數」和「幾何」的緊密關係開始談起。代數與幾何,雖然有時對問題敘述不同,實際上本質相同,可以互相轉換。例如:許多現代數學家研究古希臘的三大幾何難題,如:三等分角問題時,就將幾何轉換成了代數問題。這個例子可能離讀者有些距離,實際上從國中數學引入直角坐標系來描述實數平面開始,就可以看到代數和幾何問題的緊密結合。

  例如「ax+by+c=0」(a, b, c, x, y都是實數),是一個二元一次方程式。二元一次的意思是有兩個未知數,且未知數的最高次方為一次。二元一次方程如果撇開圖形來看,我們不難觀察到,有無限多個數對(x, y)都可以滿足ax+by+c=0,無限多個數對(x, y)在直角坐標上變成無限多個點,而這無限多個點連起來會形成一條直線。而形如x^2+y^2=r^2(r>0)(x, y, r是實數)的方程式,畫在座標平面上,則會形成半徑為r的圓形。代數方程式,對應到平面圖形的例子數不勝數,讀者可見文章附上國高中內容中,常見的二次曲線、直線圖形的方程式與圖形實例
  代數和幾何問題像是透過兩個角度來觀察同一樣物體或人,雖然會因爲角度不同,而看到不同的面貌,形狀不盡相同。因為背後的本質都是數學,所以時常切換兩個角度,對能對數學有更深了解,這就如同蘇東坡詩中所寫的「橫看成嶺側成峰, 遠近高低各不同。」 雖然都是同一座山,但從不同角度卻會看到不同的景象。
實例1:二元一次方程式的圖形
方程式:
圖形:直線
實例2:二元二次方程式的圓形
方程式:
圖形:圓形
實例3:二元二次方程式的圖形
方程式:
圖形:橢圓
實例4:二元二次方程式的圖形
方程式:
圖形:雙曲線

(二)f(x)函數的二維平面圖形定義

  要將任一個函數f(x)轉換成平面圖形並不困難。從數學定義上來看,直角座標平面上有x, y軸即原點o,軸可以無限延伸。而(x, y)就是直角座標上的一點,要將函數圖形畫出來,可將函數圖形拆成一個個點相接結合而成,就如日常生活中繪圖一樣。
  當x為屬於f函數的定義域D,可帶入函數f,得到一個值f(x),通常數學家將f(x)當作y值,故寫作y=f(x)。若將定義域中的數,和其分別對應的f(x),都找出來,會形成數對(x, y)的集合,可表示如下:
  想像將這集合中的數對一一描點對應到座標平面上,此時就形成了函數圖形。實務上,電腦和手繪當然不可能找出全部函數的點,逐一點到紙上,在手繪時會先了解該函數的特性和特徵,找出重要的點在用平滑曲線連接即可,而畫的範圍也是有限的,可能只畫接近原點幾個單位處的圖形,電腦同樣也會用估算的方式繪圖,只是因為運算速度快,所畫出的圖形可以十分精準。
為什麼會看到廣告
avatar-img
118會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Caspar的沙龍 的其他內容
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
本篇文章延續先前主軸,且分上、下兩篇。上篇將主旨聚焦於單一例子:「瞬時速度」,透過討論貓咪奔跑之實例,複習並計算平均速度之定義,在說明瞬時速度的觀念,最後進一步鋪成下篇的抽象微分概念。
在前幾篇文章中,透過許多生活例子,如:經過幾分後,計算火鍋湯溫度對時間的平均變化率;又或者計算植物的平均生長速度,讓讀者了解,斜率是由兩個變量相除計算而來,對於「斜率」有深刻了解。此篇文章則將帶領讀者,由生活中的時間間隔,進一步思考「瞬時」與「平均」變化率之間的差異。
你曾有燒開水或煮火鍋的經驗嗎?如果將開水或湯的溫度,過一段時間後,測量兩次後畫在紙上,就可以計算兩點間的斜率,本文將從燒開水的生活經驗切入,探討上篇中沒有探討的遞增型斜率,並總結正、負斜率的幾何意義,
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
本篇文章延續先前主軸,且分上、下兩篇。上篇將主旨聚焦於單一例子:「瞬時速度」,透過討論貓咪奔跑之實例,複習並計算平均速度之定義,在說明瞬時速度的觀念,最後進一步鋪成下篇的抽象微分概念。
在前幾篇文章中,透過許多生活例子,如:經過幾分後,計算火鍋湯溫度對時間的平均變化率;又或者計算植物的平均生長速度,讓讀者了解,斜率是由兩個變量相除計算而來,對於「斜率」有深刻了解。此篇文章則將帶領讀者,由生活中的時間間隔,進一步思考「瞬時」與「平均」變化率之間的差異。
你曾有燒開水或煮火鍋的經驗嗎?如果將開水或湯的溫度,過一段時間後,測量兩次後畫在紙上,就可以計算兩點間的斜率,本文將從燒開水的生活經驗切入,探討上篇中沒有探討的遞增型斜率,並總結正、負斜率的幾何意義,
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
本所許惠菁律師主持央廣【生活有辦法】, 「基泰建設」在施工的過程中,造成大直街94巷的房屋傾斜和下陷! 台北市長蔣萬安在媒體前公開說:「北市府會書面遞狀、聲請假扣押來確保住戶權益,要求基泰建設負起責任。」 到底什麼是假扣押?本週許律師將就基泰案進一步與聽眾朋友討論假扣押的概念。
Thumbnail
你認識自己嗎?你了解自己嗎? 你常重複做出相同的行為事後才後悔;然而,下一次發生類似的情形卻又做出同樣的反應,你百思不得其解,你明明不希望發生這樣的結果,為什麼卻又再次陷入同樣的情境中呢?
Thumbnail
生活有辦法:【生活話題】從奧運主題曲〈歡樂飲酒歌〉認識智慧財產權 本所許惠菁律師主持央廣【生活有辦法】, 由印刻出版社出版,蘭天律師所寫的《〈歡樂飲酒歌〉國際侵權訴訟案:台灣原住民vs.亞特蘭大奧運》。 本書詳細的紀錄了在1996年舉辦的奧運在未事先告知情況下,使用了臺灣阿美族郭英男老師演
Thumbnail
有沒有人,和我一樣很愛減肥。 減肥這件事,好像永遠都甩不掉,一直跟著我。 在以前,所謂的「減肥計畫」就是斷食,那時每天都餓到只想叫天叫地,肚子不停的咕嚕咕嚕叫,還是只能忍住,唯一的優點就是我很有毅力。 沒有什麼事,是做不到的,肚子,加油! 每一年我都要經過,「肚子再加油」的日子。雖然每次執行減肥時,
Thumbnail
【歷史上的今天】從舊金山和約中重新認識臺灣 本所許惠菁律師主持央廣【生活有辦法】,節目中我們要一起搭乘時光機回到歷史上的2022年4月28日,看看70年前的4月28日,世界發生了什麼重要的事? 舊金山和約 在舊金山和約簽訂滿70年後的今天,許多學者也提出「臺灣主權未定論」的議題探討。 本集重點
Thumbnail
📷 從我家看台灣人口結構改變 民國39-54年2次世界大戰剛結束,大家回到家鄉,除了努力工作,就拼命生小孩。生育數是台灣有史以來最高峰,稱為戰後嬰兒潮,每年生40幾萬個新生兒:我爸有7個兄弟姊妹。 民國70年我弟弟出生時,每年新生兒已經降到30萬,每年少10萬的新生兒,幅度蠻大的。
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
本所許惠菁律師主持央廣【生活有辦法】, 「基泰建設」在施工的過程中,造成大直街94巷的房屋傾斜和下陷! 台北市長蔣萬安在媒體前公開說:「北市府會書面遞狀、聲請假扣押來確保住戶權益,要求基泰建設負起責任。」 到底什麼是假扣押?本週許律師將就基泰案進一步與聽眾朋友討論假扣押的概念。
Thumbnail
你認識自己嗎?你了解自己嗎? 你常重複做出相同的行為事後才後悔;然而,下一次發生類似的情形卻又做出同樣的反應,你百思不得其解,你明明不希望發生這樣的結果,為什麼卻又再次陷入同樣的情境中呢?
Thumbnail
生活有辦法:【生活話題】從奧運主題曲〈歡樂飲酒歌〉認識智慧財產權 本所許惠菁律師主持央廣【生活有辦法】, 由印刻出版社出版,蘭天律師所寫的《〈歡樂飲酒歌〉國際侵權訴訟案:台灣原住民vs.亞特蘭大奧運》。 本書詳細的紀錄了在1996年舉辦的奧運在未事先告知情況下,使用了臺灣阿美族郭英男老師演
Thumbnail
有沒有人,和我一樣很愛減肥。 減肥這件事,好像永遠都甩不掉,一直跟著我。 在以前,所謂的「減肥計畫」就是斷食,那時每天都餓到只想叫天叫地,肚子不停的咕嚕咕嚕叫,還是只能忍住,唯一的優點就是我很有毅力。 沒有什麼事,是做不到的,肚子,加油! 每一年我都要經過,「肚子再加油」的日子。雖然每次執行減肥時,
Thumbnail
【歷史上的今天】從舊金山和約中重新認識臺灣 本所許惠菁律師主持央廣【生活有辦法】,節目中我們要一起搭乘時光機回到歷史上的2022年4月28日,看看70年前的4月28日,世界發生了什麼重要的事? 舊金山和約 在舊金山和約簽訂滿70年後的今天,許多學者也提出「臺灣主權未定論」的議題探討。 本集重點
Thumbnail
📷 從我家看台灣人口結構改變 民國39-54年2次世界大戰剛結束,大家回到家鄉,除了努力工作,就拼命生小孩。生育數是台灣有史以來最高峰,稱為戰後嬰兒潮,每年生40幾萬個新生兒:我爸有7個兄弟姊妹。 民國70年我弟弟出生時,每年新生兒已經降到30萬,每年少10萬的新生兒,幅度蠻大的。