馬達小教室:電阻 ( III )

更新 發佈閱讀 4 分鐘

本文是針對高電阻的使用進行介紹。

之前有提到,大部份的情況下,希望電阻越低越好,主要是降低馬達線圈上的銅損,此時我們再重新看一下電壓(V)、電阻(R)、電流(i)及銅損(Pc)的公式。一般使用情況,我們會提供固定的電壓值,如家中常見的110V等等,則可觀察到一種有趣的條件;由電壓方程式可知,在固定電壓下,電阻值越大時,電流值就會越小,反之,電阻值越小時,電流就會越大,是維持一種固定的比例關係。

raw-image

而當我們在討論銅損時,電流及電阻的比例關係變得不同了。由下列的銅損(Pc)方程式中可知,電流(i)是個二次方的係數,而電阻(Rc)只是一次方的關係。這意味著若要壓制銅損,降低電流的效果會遠比降低電阻的效果來得好很多。

raw-image

綜合兩個方程式的描述,就會發現拉高電阻值,可以抑制電流,達到降低銅損的效果。這明顯與上一篇提到的結果完全對立,上一篇中我們需要將電阻降得越低越好,代表馬達銅損會降低,馬達效率會提高。然而從電壓方程式來看,低電阻會造成大電流,產生十分龐大的銅損。

會讓人如此糾結的原因,是科技進步了,有其它的方式可以有效的抑制電流值,不再需要依靠電阻了;因此上一篇中,我們才會很單純的希望電阻越低越好。最常用的就是脈波寬度調變(Pulse-width modulation,PWM)技術;假若不太想花時間了解PWM,簡單的解釋,就是它把電壓值降低了。由電壓方程式中,我們可以發現,當電阻固定時,電壓越低,則電流就越低。這也是為什麼電子業界中的工作電壓一直降的原因,就是為了降低電流所產生的損失。

而傳統馬達,並無導入這些電子控制技術的,就會需要依賴電阻協助抑制電流,目前仍需要高電阻的馬達為感應馬達(Induction motor)、串激馬達(Universal motor)、直流馬達(Brushed DC motor)等等。

事實上,這些需要高電阻的傳統馬達設計,其實更為困難。基本要維持三要素:

  1. 效率:降低銅損,代表馬達轉換效率高
  2. 安全:抑制銅損所產生的溫度,避免馬達過熱燒毀。
  3. 力量:仍要維持有效的轉矩輸出

因馬達的電流也與馬達的力量有關係,可參考轉矩方程式;當電流受到電阻限制時,也代表馬達的出力受到限制。如何有效的拿捏,就要完全依靠設計者的規劃了。

raw-image
  • T:轉矩
  • B:磁力強度
  • I:電流
  • L:馬達積厚
  • D:轉子直徑
  • N:圈數
  • Sin(δ):電場與磁場正交角度(電氣角)

而使用電子控制技術的馬達,就會有更好的效率及更大的轉矩,因其不會受到高電阻造成的銅損及電流限制,可自由的調控電流值,達到理想的輸出。在馬達的設計上,就會如同上一篇所說的,簡化為將電阻降越低越好,不需有額外的考慮要素。但電子元件的故障率、硬體限制及安全係數等等表現,很有可能不如傳統馬達,因此會有舊產品很耐用,可以輕鬆戰十年;而新產品雖然省電,但容易壞,兩年要換新的感受。


重點整理:

沒有最好的馬達,只有最適合的馬達。

大部份的情況,電阻是越小越好,但在部份馬達中,並不適用,需注意。

#可擔任業界顧問、講師

#個人經營歡迎贊助

馬達製造的專家-路昌工業

電動生活體驗-哿暢機電

電機產業的專業代工生產廠-富竹企業社

馬達技術傳承計畫

想要馬達的技術嗎?想要的話可以全部給你,去找吧!

我把所有的知識都放在那裡了。

留言
avatar-img
馬達技術傳承計畫
316會員
383內容數
歡迎贊助或是多點廣告,謝謝 可擔任業界顧問、講師
2024/12/30
上一章節詳細了講述啟動電流(Starting Current)的來源及影響因素,本章節將針對馬達應用上的可能危害及其他控制技巧進行解釋說明。 首先可以知道,馬達的最大啟動電流往往為額定規格的3~5倍以上,若先採用之前的示範例來看,原本輸入電壓為110V,而馬達電阻為11Ω,就代表馬達最大啟動電流可
Thumbnail
2024/12/30
上一章節詳細了講述啟動電流(Starting Current)的來源及影響因素,本章節將針對馬達應用上的可能危害及其他控制技巧進行解釋說明。 首先可以知道,馬達的最大啟動電流往往為額定規格的3~5倍以上,若先採用之前的示範例來看,原本輸入電壓為110V,而馬達電阻為11Ω,就代表馬達最大啟動電流可
Thumbnail
2024/12/25
對於一般民眾而言,啟動電流(Starting Current)主要影響的是耗電問題,而對馬達業者來說,則是啟動轉矩(Starting Torque)的大小以及安全保護的取捨。本文則是詳細說明啟動電流的來龍去脈,才能達到全面性的理解,並能有效地提出各種故障異常的處理或是預期性的安全保護對策。 最簡單
Thumbnail
2024/12/25
對於一般民眾而言,啟動電流(Starting Current)主要影響的是耗電問題,而對馬達業者來說,則是啟動轉矩(Starting Torque)的大小以及安全保護的取捨。本文則是詳細說明啟動電流的來龍去脈,才能達到全面性的理解,並能有效地提出各種故障異常的處理或是預期性的安全保護對策。 最簡單
Thumbnail
2024/08/01
每當有人詢問筆者,馬達線材可承受的最大電流是多少? 腦中的第一個想法是要優先確認目標線材,馬達當中會有兩種線材需要確認電流狀況,分別為出口線及漆包線。若是詢問出口線的部分,那十分簡單,查閱電工法規就會告知多少電流需要使用多粗的線徑,甚至連絕緣皮膜的種類耐溫規範都直接規定,只需要照表操課就可以,如下圖
Thumbnail
2024/08/01
每當有人詢問筆者,馬達線材可承受的最大電流是多少? 腦中的第一個想法是要優先確認目標線材,馬達當中會有兩種線材需要確認電流狀況,分別為出口線及漆包線。若是詢問出口線的部分,那十分簡單,查閱電工法規就會告知多少電流需要使用多粗的線徑,甚至連絕緣皮膜的種類耐溫規範都直接規定,只需要照表操課就可以,如下圖
Thumbnail
看更多
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
本文來介紹馬達如何自主燒毀的原因。 由上一篇文章中可以發現,馬達在不同溫度下的表現完全不同,尤其是永磁馬達最為明顯,其主要原因可以從轉矩方程式中查得。當磁鐵受到溫度增加而磁力降低時,轉矩方程式中的B值就會下降,直接造成輸出轉矩T隨之下降。這就引發了另一個有趣的問題,廠商所給的馬達特性曲線,到底是在
Thumbnail
本文來介紹馬達如何自主燒毀的原因。 由上一篇文章中可以發現,馬達在不同溫度下的表現完全不同,尤其是永磁馬達最為明顯,其主要原因可以從轉矩方程式中查得。當磁鐵受到溫度增加而磁力降低時,轉矩方程式中的B值就會下降,直接造成輸出轉矩T隨之下降。這就引發了另一個有趣的問題,廠商所給的馬達特性曲線,到底是在
Thumbnail
本文要討論溫度對於馬達的影響。 主要先注意各個材料的部份,一般會注意的檢查順序如下 1. 絕緣材料:耐溫上限。 2. 磁鐵:耐溫上限及溫度影響磁力。 3. 漆包線:耐溫上限及電阻變化。 4. 軸承:潤滑油工作溫度範圍。 5. 出口電源線:耐溫上限。 其中絕緣材料、漆包線及出口電源線會直接影響安全問題
Thumbnail
本文要討論溫度對於馬達的影響。 主要先注意各個材料的部份,一般會注意的檢查順序如下 1. 絕緣材料:耐溫上限。 2. 磁鐵:耐溫上限及溫度影響磁力。 3. 漆包線:耐溫上限及電阻變化。 4. 軸承:潤滑油工作溫度範圍。 5. 出口電源線:耐溫上限。 其中絕緣材料、漆包線及出口電源線會直接影響安全問題
Thumbnail
本文討論如何增加馬達效率。 理論上還有一種降電阻的手法,就是直接換更好的導電材料,但太貴。 重點整理: 電能損耗解法,降電流、降電阻、降溫度。
Thumbnail
本文討論如何增加馬達效率。 理論上還有一種降電阻的手法,就是直接換更好的導電材料,但太貴。 重點整理: 電能損耗解法,降電流、降電阻、降溫度。
Thumbnail
由於永磁馬達內部仍有磁阻力的作用,要先介紹磁阻馬達才好理解。 另外就是電流值的強弱變化,也會導致電感值有變化,如下圖所示。 重點整理: 降低轉矩漣波為重要課題,但這其實也降低了輸出轉矩值。 馬達顧問服務
Thumbnail
由於永磁馬達內部仍有磁阻力的作用,要先介紹磁阻馬達才好理解。 另外就是電流值的強弱變化,也會導致電感值有變化,如下圖所示。 重點整理: 降低轉矩漣波為重要課題,但這其實也降低了輸出轉矩值。 馬達顧問服務
Thumbnail
除了前面提到的銅損之外,其實馬達導體中,還包括了效益不高的線圈端部及分壓所造成的電壓降(Voltage Drop)損失。 然而各導電體都有各自的電阻值,當電流經過時,會有個分壓的效果,導致馬達線圈的真實工作電壓下降。由於分壓造成的損耗,英文名稱為Voltage Drop,因此採用d做為符號。
Thumbnail
除了前面提到的銅損之外,其實馬達導體中,還包括了效益不高的線圈端部及分壓所造成的電壓降(Voltage Drop)損失。 然而各導電體都有各自的電阻值,當電流經過時,會有個分壓的效果,導致馬達線圈的真實工作電壓下降。由於分壓造成的損耗,英文名稱為Voltage Drop,因此採用d做為符號。
Thumbnail
狹義的銅損,其實在之前的電阻單元已經有提過了,但在馬達設計的理論當中,受到導電體所產生的損耗,不僅僅是銅損而已;本文將總括進行說明。 當馬達設計無法降低工作電流時,那就只能從電阻著手,其相乘的正比關係,代表電阻越小,則銅損也就越小。要有效的降低銅損,有以下幾種方式 馬達顧問服務
Thumbnail
狹義的銅損,其實在之前的電阻單元已經有提過了,但在馬達設計的理論當中,受到導電體所產生的損耗,不僅僅是銅損而已;本文將總括進行說明。 當馬達設計無法降低工作電流時,那就只能從電阻著手,其相乘的正比關係,代表電阻越小,則銅損也就越小。要有效的降低銅損,有以下幾種方式 馬達顧問服務
Thumbnail
本文要來解釋電壓、馬達轉速與圈數間的關係。 基本上,馬達轉速與電壓成正比,這在馬達的電氣方程式中有直接描述到,其中V代表電壓,ω就是馬達角速度。由此可直觀的看到,當電壓越高時,馬達轉速就會越高。 馬達顧問服務
Thumbnail
本文要來解釋電壓、馬達轉速與圈數間的關係。 基本上,馬達轉速與電壓成正比,這在馬達的電氣方程式中有直接描述到,其中V代表電壓,ω就是馬達角速度。由此可直觀的看到,當電壓越高時,馬達轉速就會越高。 馬達顧問服務
Thumbnail
本文是以馬達的角度,討論如何降低電阻。
Thumbnail
本文是以馬達的角度,討論如何降低電阻。
Thumbnail
本文是以馬達的角度,來看待電阻這一物理特性。
Thumbnail
本文是以馬達的角度,來看待電阻這一物理特性。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News