Smith Chart 與 阻抗匹配設計

更新於 發佈於 閱讀時間約 7 分鐘
█類比電路設計的理論工具
1.波德圖(Bode Chart)頻域分析
2.史密斯圖(Smith Chart)
3.電晶體Π 型模型
4.電晶體H 型模型
■駐波
兩列振幅相同的相干波在同一直線上沿相反方向傳播時,波谷和波峰
互相疊加保持不動,波形不移動,無法向前傳播,稱為駐波。
一般傳輸線上的電磁波是由行波(向前傳輸的波)和反射波構成
■駐波比 VSWR (Voltage Standing Wave Ratio)
●駐波比可反映波停留的狀態
駐波比越大,波就越停留在原地,駐波比無窮大,
就代表波是停留在原地無法傳播
●駐波比的倒數(=行波係數)
它表示波行進的狀態,行波係數越大,代表波越向前行進。
█阻抗匹配
阻抗匹配是指信號源或者傳輸線跟負載之間達到一種適合的搭配。阻抗匹配主要有兩點作用,調整負載功率和抑制信號反射。
●阻抗匹配的方法
阻抗匹配的方法主要有兩個
1.信號源跟負載間的阻抗匹配 : 透過改變阻抗力就是通過電容、電感與負載的並串聯調整負載阻抗值,以達到源和負載間的阻抗匹配
2. 傳輸線的阻抗匹配 : 透過調整傳輸線是加長源和負載間的距離,配合電容和電感把阻抗調整為零,此時信號不會發生反射。高速PCB布線中,一般把
(1)數位訊號的走線阻抗設計為50歐姆。
(2)閉路電視同軸電纜特性阻抗為75Ω,
(3)射頻設備上則常用特徵阻抗為50Ω的同軸電纜,
(4)對絞線(差分)為85-100歐姆。
●低頻電路和高頻電路的阻抗匹配差異
1.低頻電路 : 只考慮信號源跟負載之間的匹配,不考慮傳輸線的匹配
因為低頻信號的波長相對於傳輸線來說很長,傳輸線可以看成是“短線”,
即使反射回來,跟原信號還是一樣的。
2.高頻電路 : 須考慮信號源跟負載之間的匹配及傳輸線的匹配
如果傳輸線的特徵阻抗跟負載阻抗不相等(即不匹配)時,在負載端就會產生反射。傳輸線的特徵阻抗(也叫做特性阻抗)是由傳輸線的結構以 及材料決定的
●阻抗不匹配會有什麼不良後果呢?
如果不匹配,則會形成信號反射,在傳輸線上形成駐波(就是有些地方信號強,有些地方信號弱),導致傳輸線的有效功率容量降低;功率發射不出去,甚至會損壞發射設 備。
如果是電路板上的高速信號線與負載阻抗不匹配時,會產生震盪,輻射干擾等。
●電路的阻抗匹配設計
1.PCB走線
高頻領域中,信號頻率對PCB走線的阻抗值影響非常大。
一般來說當數位訊號邊沿時間小於1ns或者模擬信號頻率超過300M時
就要考慮阻抗問題。
PCB走線阻抗主要來自寄生的電容、電阻、電感係數,主要因素有
材料介電常數、線寬、線厚乃至焊盤的厚度等。
PCB 阻抗的範圍是 25 至120 歐姆,
USB、 LVDS、 HDMI、 SATA等一般要做85-100歐姆阻抗控制。
2. 天線設計
天線阻抗設計的主要目的是為實現天線和饋線間的匹配。
發射信號時應使發射天線與饋線的特性阻抗相等,以獲得最好的信號增益。
接收信號時天線與負載應做共軛匹配,接收機(負載)阻抗一般認為只有
實數部分,因此需要用匹配網絡來除去天線的電抗部分並使它們的
電阻部分相等。
下圖為天線阻抗匹配時常用的π型網絡,使用網絡分析儀測量阻抗
以確定 C1、C2、C3 的取值,完成阻抗匹配。
■YZ-Smith Chart (阻抗導納史密斯圖)
史密斯圖是做高頻元件最常用的設計工具,圖的演進如下
【視頻】電路參數 - 史密斯圖_1
【視頻】電路參數 - 史密斯圖_2
●Z-Smith Chart (阻抗-史密斯圓圖)
【視頻】Smith Chart Example for VSWR, Reflection Coefficient and Input Impedance Calculation
密斯圓圖上至少還有其他四個重要點。
最右邊代表“開路”,電阻分量為無窮大,
最左邊代表“短路”,電阻分量為零。
頂部可以看到“1.0”,表示阻抗為+j*1.0,純電感。
底部可以看到“1.0”,代表阻抗為-j*1.0,純電容。
中間的每個點都代表不匹配條件導致的各種組合,並顯示您與所需阻抗
(通常是中心)的距離以及如何形成共軛匹配電路。只需繪製負載的阻抗,
然後穿過正確的曲線到達中心(50 歐姆)。
若要精確畫出,建議用電路模擬軟體
●YZ-Smith Chart (阻抗Z-Smith+導納Y-Smith==>合併成YZ-Smith圓圖)
Z阻抗串聯圖旋轉180度就是Y導納並聯圖,兩者合併成YZ圖
YZ圖的中心點代表50Ω阻抗,劃出的同心圓代表反射圓
在許多的實際設計工作中,需要頻繁地進行阻抗與導納的相互轉換。
為了處理這樣的問題,才將阻抗圓圖和導納圓圖疊加成 YZ-Smith Chart
疊加構成的阻抗-導納史密斯圓圖可直接用於阻抗和導納之間的轉換。
YZ-Smith Chart (Normalized impedance and admittance smith chart)中
包括
1.Z-Smith-阻抗Z圓圖 : 實數(紅色發散圓)+虛數(澄色弧線)
2.Y-Smith-導納Y圓圖 : 實數(藍色發散圓)+虛數(粉紅弧線)
【例】由上圖可知Z-Smith-阻抗Z圓圖的 ZL=25+j25 等同於
Y-Smith-導納Y圓圖Y=20m−j20m
●Z-Smith Chart 下載可至
●YZ-Smith Chart 下載可至
█Smith Chart匹配方法
●史密斯圖匹配,只需要記得下圖及下面4點即可。
1.只要走導納(admittance)圓都是並聯模式,走電阻(impedance)圓都是串聯
模式。
2.往上為電感,往下為電容。
3.另外走順時鐘電感或電容值為增加越多,走越遠,走逆時鐘反之。
4. 圖中經過圓心的兩個圓分別是50歐姆的電阻圓和電導圓
(以特性阻抗為50Ω為例), 圓上的電阻值不會變化,變化的是電抗的值;
●電路添加在SmithChart“移動”求解匹配的步驟
規則1 :電路圖分段切割成單獨的並聯或串聯
規則2 串聯添加組件時,將它們視為阻抗並使用阻抗Z圓坐標。
並聯添加組件時,將它們視為導納並使用導納Y圓坐標。
依此在圖表上沿著弧線和圓“移動”到最後得出的座標值就是匹配結果。
【視頻】波導實習 (阻抗量測)
█Smith Circular 軟體工具
●SimSmith V18
http://www.ae6ty.com/Smith_Charts.html
●Smith V4.1 :
●Matchmaker-RF Impedance Matching Software
●iMatch
●KeySight ADS
●RF/Microwave Software Tools
為什麼會看到廣告
avatar-img
77會員
125內容數
1.占星軟體及運用 2.各種推運法(Transit / 次限 / 主限 / Solar Arc / 法達星限 / 中點占星等)
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
跨元探索的沙龍 的其他內容
■視頻重點摘要 ●符號及運算 單位脈衝 δ[n]=u[n]-u[n-1] 單位步階 u[n] 脈衝信號 h[n] 序列信號 x[n] ●Z轉換 y[n]=h[n]*x[n] 為 Time - Domain 的差分方程式 (式中*為卷積) 頻率響應指頻率的放大倍數
【TIPS】信號處理各式轉換及DFT/IDFT公式 █傅立葉級數與傅立葉轉換(Fourier Transform) ●波 = 傅立葉級數 =sin波+cos波 = 無數sin波的疊加 =實數波+虛數波 ●通訊波分類:輸出/輸入(發射波/接收波) 簡單波的組合。
●天線 天線是作無線電波的發射或接收用的一種金屬裝置(如杆、線或線的排列) 在無線電設備中用來發射或接收電磁波的部件。 無線電通信、廣播、電視、雷達、導航、電子對抗、遙感、射電天文等工程系統,凡是利用電磁波來傳遞資訊的,都依靠天線來進行工作。 ●電磁波頻段 3.各國軍用頻段比較 ●雷達原理及功能
■通話原理 : 依靠電磁波完成通話(圖像亦同) 1.地球空氣中存在著無數的電磁波(=語音+載波),其速度等同於光速 2.若將電磁波的頻率區隔,則可分成不同的頻段(Channel) 3.人類發現電磁波可以快速(光速)傳播聲音的方法: 即是發明一種人造電磁波=語音+載波,然後用 然後分離取出語音信號
■手機天線基本原理 ■5G 關鍵技術 1.毫米波(mmWave) 2.QAM 四象限振幅調變 (又稱正交振幅調變) 3. 毫米波(mmWave)波束成形(Beamforming)天線技術 5G手機通訊使用頻寬分兩大派別:Sub-6GHz與mmWave,其主要差異如下表 基地台覆蓋區大小可圖是如下:
【TIPS】 每個人的手機天線要傳送出去的數位訊號 0 與 1 都變成不同波形的 電磁波,問題來了,這麼多不同波形的電磁波丟到空中,該如何區分 USER 呢? 就是用多工技術(TDMA、FDMA、CDMA、OFDM):將電磁波區分給 不同的使用者使用。 ■多重路徑載波對信號傳遞的影響 ●ZP-補零
■視頻重點摘要 ●符號及運算 單位脈衝 δ[n]=u[n]-u[n-1] 單位步階 u[n] 脈衝信號 h[n] 序列信號 x[n] ●Z轉換 y[n]=h[n]*x[n] 為 Time - Domain 的差分方程式 (式中*為卷積) 頻率響應指頻率的放大倍數
【TIPS】信號處理各式轉換及DFT/IDFT公式 █傅立葉級數與傅立葉轉換(Fourier Transform) ●波 = 傅立葉級數 =sin波+cos波 = 無數sin波的疊加 =實數波+虛數波 ●通訊波分類:輸出/輸入(發射波/接收波) 簡單波的組合。
●天線 天線是作無線電波的發射或接收用的一種金屬裝置(如杆、線或線的排列) 在無線電設備中用來發射或接收電磁波的部件。 無線電通信、廣播、電視、雷達、導航、電子對抗、遙感、射電天文等工程系統,凡是利用電磁波來傳遞資訊的,都依靠天線來進行工作。 ●電磁波頻段 3.各國軍用頻段比較 ●雷達原理及功能
■通話原理 : 依靠電磁波完成通話(圖像亦同) 1.地球空氣中存在著無數的電磁波(=語音+載波),其速度等同於光速 2.若將電磁波的頻率區隔,則可分成不同的頻段(Channel) 3.人類發現電磁波可以快速(光速)傳播聲音的方法: 即是發明一種人造電磁波=語音+載波,然後用 然後分離取出語音信號
■手機天線基本原理 ■5G 關鍵技術 1.毫米波(mmWave) 2.QAM 四象限振幅調變 (又稱正交振幅調變) 3. 毫米波(mmWave)波束成形(Beamforming)天線技術 5G手機通訊使用頻寬分兩大派別:Sub-6GHz與mmWave,其主要差異如下表 基地台覆蓋區大小可圖是如下:
【TIPS】 每個人的手機天線要傳送出去的數位訊號 0 與 1 都變成不同波形的 電磁波,問題來了,這麼多不同波形的電磁波丟到空中,該如何區分 USER 呢? 就是用多工技術(TDMA、FDMA、CDMA、OFDM):將電磁波區分給 不同的使用者使用。 ■多重路徑載波對信號傳遞的影響 ●ZP-補零
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
在科學和工程領域中,「示波器」是一種無可替代的工具。「示波器」是一種電子測量儀器,能夠將電壓變化為數位資訊,使我們能夠觀察到訊號波形。這使得示波器成為了電子工程師的重要工具,因為「示波器」可以用來分析和測試電子系統的性能。此外,示波器的功能並不僅僅限於電子領域,在其他眾多領域中,「示波器」也都有著廣
Thumbnail
傳統馬達會利用調整電阻值的大小,來直接限制馬達輸入電流的上限;但電阻值的增加也會導致銅損值上升,是種如同雙面刃的技法。所幸隨著電控技術的進步,馬達電流的限制工作可以轉交給驅動電路掌控,馬達僅需要盡可能地降低電阻值即可;更直白的說就是漆包線徑越粗越好,暨可以降低馬達電阻,還同時強化散熱能力,以得到更優
Thumbnail
變壓器在現代電子設備中扮演著重要角色,根據應用需求可分為高頻和低頻兩種類型。 高頻變壓器注重效率和體積,使用精密繞線技術和高品質材料。低頻變壓器強調穩定性和耐用性,採用矽鋼片和精密繞組設計。
Thumbnail
以相對性為出發點來說: 低頻是生命(體)的源泉; 高頻是生命(體)的信標。
Thumbnail
本文是筆者在查反電動勢公式時,赫然發現並未詳細描述,故進行補完。 反電動勢的數學公式,最常出現在馬達電器方程式當中,是用來描述馬達運作時的電能狀態的數學表示式;如下列所式,其中V為馬達輸入電壓,i為馬達電流,Rm則是馬達電阻,Lm是馬達電感,di/dt代表電流對時間的微分,因為馬達電感的作用僅在電
Thumbnail
本文是針對馬達繞線時,想要依本身的生產能力調整漆包線徑粗度時,會使用到的轉換計算進行介紹及說明。 實際量產時往往將多條細線並繞的馬達,改由單條粗線採用機台繞線,較為省時;但開發階段,並無設備協助,僅能採用人工繞線打樣時,則會調整為多條細線並聯的模式才能順利工作,這類不同情境下的線徑變化,三不五時就
Thumbnail
本文將從電流密度(Current Density)的觀點來決定漆包線徑的粗細;實務上要考量更為複雜,包括工作電壓、絕緣強度及法規、尺寸限制、加工能力等等,因此拆分不同主題來進行探討。 電流密度的基本定義可以簡單地從單位上面得知,這也是筆者在研究所時期的體驗之一,單位很重要,不僅僅是用來標示,更多時
Thumbnail
在之前的文章中已經有提到細線併繞將會導致槽滿率的下降,本文就來深究其原因。 追根究柢就是因為多線併繞時,往往會於繞線的過程中,自然而然的產生類絞線排列,反倒使原本理想中的細線排列分佈,絞成了一個大圓線的配置,導致更多的間隙使得馬達槽滿率下降。 在線徑與並聯股數換算中有一個計算例,是4股的0.3m
Thumbnail
常常有人在詢問,馬達繞線時的張力如何調整。實務上其實只要確認電阻值即可作為張力調整的依據,但本文則以較為學術的觀點,來討論繞線張力的理論值。 在討論力量之前,需要先了解銅線受力之後的變化,可參考金屬材料應力應變圖,其中X軸的應變就是代表材料變形狀態,Y軸的應力就是指力量大小的變化。可觀察到一般材料
Thumbnail
本文來探討細線對於馬達特性的影響。 其實身為一位馬達設計者,腦中應該就不會有細線的選項,這點可以由最基本的馬達轉矩公式就可一窺其原因;其中跟馬達漆包線圈有直接關聯的參數僅有圈數(N),這代表圈數越多,則轉矩就越大。而另一個間接會影響到的參數為電流(I),主要是歐姆定律告知我們,在固定輸入電壓(V)
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
在科學和工程領域中,「示波器」是一種無可替代的工具。「示波器」是一種電子測量儀器,能夠將電壓變化為數位資訊,使我們能夠觀察到訊號波形。這使得示波器成為了電子工程師的重要工具,因為「示波器」可以用來分析和測試電子系統的性能。此外,示波器的功能並不僅僅限於電子領域,在其他眾多領域中,「示波器」也都有著廣
Thumbnail
傳統馬達會利用調整電阻值的大小,來直接限制馬達輸入電流的上限;但電阻值的增加也會導致銅損值上升,是種如同雙面刃的技法。所幸隨著電控技術的進步,馬達電流的限制工作可以轉交給驅動電路掌控,馬達僅需要盡可能地降低電阻值即可;更直白的說就是漆包線徑越粗越好,暨可以降低馬達電阻,還同時強化散熱能力,以得到更優
Thumbnail
變壓器在現代電子設備中扮演著重要角色,根據應用需求可分為高頻和低頻兩種類型。 高頻變壓器注重效率和體積,使用精密繞線技術和高品質材料。低頻變壓器強調穩定性和耐用性,採用矽鋼片和精密繞組設計。
Thumbnail
以相對性為出發點來說: 低頻是生命(體)的源泉; 高頻是生命(體)的信標。
Thumbnail
本文是筆者在查反電動勢公式時,赫然發現並未詳細描述,故進行補完。 反電動勢的數學公式,最常出現在馬達電器方程式當中,是用來描述馬達運作時的電能狀態的數學表示式;如下列所式,其中V為馬達輸入電壓,i為馬達電流,Rm則是馬達電阻,Lm是馬達電感,di/dt代表電流對時間的微分,因為馬達電感的作用僅在電
Thumbnail
本文是針對馬達繞線時,想要依本身的生產能力調整漆包線徑粗度時,會使用到的轉換計算進行介紹及說明。 實際量產時往往將多條細線並繞的馬達,改由單條粗線採用機台繞線,較為省時;但開發階段,並無設備協助,僅能採用人工繞線打樣時,則會調整為多條細線並聯的模式才能順利工作,這類不同情境下的線徑變化,三不五時就
Thumbnail
本文將從電流密度(Current Density)的觀點來決定漆包線徑的粗細;實務上要考量更為複雜,包括工作電壓、絕緣強度及法規、尺寸限制、加工能力等等,因此拆分不同主題來進行探討。 電流密度的基本定義可以簡單地從單位上面得知,這也是筆者在研究所時期的體驗之一,單位很重要,不僅僅是用來標示,更多時
Thumbnail
在之前的文章中已經有提到細線併繞將會導致槽滿率的下降,本文就來深究其原因。 追根究柢就是因為多線併繞時,往往會於繞線的過程中,自然而然的產生類絞線排列,反倒使原本理想中的細線排列分佈,絞成了一個大圓線的配置,導致更多的間隙使得馬達槽滿率下降。 在線徑與並聯股數換算中有一個計算例,是4股的0.3m
Thumbnail
常常有人在詢問,馬達繞線時的張力如何調整。實務上其實只要確認電阻值即可作為張力調整的依據,但本文則以較為學術的觀點,來討論繞線張力的理論值。 在討論力量之前,需要先了解銅線受力之後的變化,可參考金屬材料應力應變圖,其中X軸的應變就是代表材料變形狀態,Y軸的應力就是指力量大小的變化。可觀察到一般材料
Thumbnail
本文來探討細線對於馬達特性的影響。 其實身為一位馬達設計者,腦中應該就不會有細線的選項,這點可以由最基本的馬達轉矩公式就可一窺其原因;其中跟馬達漆包線圈有直接關聯的參數僅有圈數(N),這代表圈數越多,則轉矩就越大。而另一個間接會影響到的參數為電流(I),主要是歐姆定律告知我們,在固定輸入電壓(V)