馬達設計:漆包線 ( III )

更新於 發佈於 閱讀時間約 3 分鐘

本文來探討細線對於馬達特性的影響。

其實身為一位馬達設計者,腦中應該就不會有細線的選項,這點可以由最基本的馬達轉矩公式就可一窺其原因;其中跟馬達漆包線圈有直接關聯的參數僅有圈數(N),這代表圈數越多,則轉矩就越大。而另一個間接會影響到的參數為電流(I),主要是歐姆定律告知我們,在固定輸入電壓(V)的情況下,線圈上的電阻(R)會抑制電流(I)的大小;這就表示了漆包線圈的電阻值越小越好,因此漆包線徑是越粗越好。

馬達轉矩方程式及歐姆定律

馬達轉矩方程式及歐姆定律

然而理想是豐滿的,現實是骨感的。在有限的槽空間內,不可能無窮的加大漆包線徑,這就導致細線的選項開始浮出,是個不得以而為之的結果。但細線造成的後續影響,其實遠比馬達設計者認知的嚴重許多,主要是槽滿率的大幅下降。在上一篇中已經提到漆包細線因為絕緣層的比例關係,造成真實槽滿率的下降;但細線造成的影響還有排列不整齊的發生率,由下圖中可以發現,在單條粗線的情況,線條往往較有機會整齊的排列於馬達矽鋼片槽內,進而求得最大槽滿率的比例;但到細線的排列時,可以發現初期的排列還是十分整齊的,但到了某一階段後,就會開以凌亂,造成槽滿率大幅下降,產生需多空洞的區域。

細線造成的槽滿率下降

細線造成的槽滿率下降

這種排列不整齊造成的因素,其基本的原理說明可以參考前文,簡單的算法就是漆包線的累積公差達到線徑的一半時,就會開始增加排線不整齊的發生率。而這種尺寸公差是必然的存在,可以查閱漆包線廠商提供的尺寸表中,就有明確的標示不同線徑時所對應的允許公差範圍,其數值比例都相當的小,因此一般情況下往往將其忽略不計,但這就是造成馬達設計者對於槽滿率的預期,產生明顯的落差。

漆包線生產允許公差

漆包線生產允許公差

我們以細線徑0.1以及粗線徑1.0來相比較,可使用下列簡單的公式求得其開始不整齊的圈數(NR),其中漆包線徑為(WD),漆包線的生產公差為(WA)。則計算後可以求得細線徑0.1其不整齊圈數為6.25圈,也就是代表每當繞線圈數累積到6.25圈時,就有可能導致線圈排列不整齊;而粗線徑1.0的不整齊圈數為16.67圈才有可能導致線圈排列不整齊。這兩者的比例差了2.67倍,而且細線往往也代表著更多的圈數,如粗線徑1.0繞10圈的空間內,改為細線徑0.1的話,則可以繞高達100圈的可能,但如此一來混亂的可能性更是大幅地增加了。

非整齊排列圈數

非整齊排列圈數

以上述的例子中,粗線徑1.0繞10圈,但其不整齊的圈數要達到16.67圈,代表粗線徑1.0根本沒有排列不整齊的機會。然而,同樣的空間內,細線徑0.1則是可以繞到100圈,但每6.25圈就會遇到排列不整齊的機會,代表總共會遇到16次的風險,因此兩者間的真實槽滿率,當然大相逕庭。

重點整理:
魔鬼藏在細節內。


#可擔任業界顧問、講師

#個人經營歡迎贊助

馬達製造的專家-路昌工業

電動生活體驗-哿暢機電

電機產業的專業代工生產廠-富竹企業社

馬達技術傳承計畫

想要馬達的技術嗎?想要的話可以全部給你,去找吧!
我把所有的知識都放在那裡了。

留言
avatar-img
留言分享你的想法!
avatar-img
馬達技術傳承計畫
283會員
264內容數
歡迎贊助或是多點廣告,謝謝 可擔任業界顧問、講師
2025/03/17
最近遇到較多客戶在詢問採用內轉子馬達較為適當,抑或是外轉子馬達才是最優解的問題,雖然筆者在過往的文章內有約略介紹到內、外轉馬達各自的優缺點,但並沒有使用數理性的解析,僅作了些主觀的文字描述而已,因此才想要另行文章來補足內、外轉子馬達差異的理論基礎,以利馬達設計時的選擇參考依據。 首先,比較上要有個
Thumbnail
2025/03/17
最近遇到較多客戶在詢問採用內轉子馬達較為適當,抑或是外轉子馬達才是最優解的問題,雖然筆者在過往的文章內有約略介紹到內、外轉馬達各自的優缺點,但並沒有使用數理性的解析,僅作了些主觀的文字描述而已,因此才想要另行文章來補足內、外轉子馬達差異的理論基礎,以利馬達設計時的選擇參考依據。 首先,比較上要有個
Thumbnail
2025/02/26
主要是廠商在詢問,現有的一顆標準規格馬達,其數據資料也已然量測完成,然而客戶有額外想要的轉速目標,希望能針對特定轉速產出對應的特性曲線圖,讓客戶做為評估參考。 當筆者聽到這需求時,其實優先想到的是限制條件,也就是必須在不改變馬達外觀尺寸的前提之下,僅能使用變動繞線條件以及磁鐵強弱的技巧來調變馬達轉
Thumbnail
2025/02/26
主要是廠商在詢問,現有的一顆標準規格馬達,其數據資料也已然量測完成,然而客戶有額外想要的轉速目標,希望能針對特定轉速產出對應的特性曲線圖,讓客戶做為評估參考。 當筆者聽到這需求時,其實優先想到的是限制條件,也就是必須在不改變馬達外觀尺寸的前提之下,僅能使用變動繞線條件以及磁鐵強弱的技巧來調變馬達轉
Thumbnail
2025/01/16
上一篇說明了對應槽極配後,繞線法則的均分磁場電氣角的概念,本文將針對滿足規則後,基於特定條件而採用不同繞線規則的影響;本此將改採用8極12齒的配置,以展示不同案例作為參考。 同樣優先計算齒均分電氣角度,即可獲得(180*8)/12=120度,將其乘上對應齒數後列表如下,並將其超過360度的部分化簡
Thumbnail
2025/01/16
上一篇說明了對應槽極配後,繞線法則的均分磁場電氣角的概念,本文將針對滿足規則後,基於特定條件而採用不同繞線規則的影響;本此將改採用8極12齒的配置,以展示不同案例作為參考。 同樣優先計算齒均分電氣角度,即可獲得(180*8)/12=120度,將其乘上對應齒數後列表如下,並將其超過360度的部分化簡
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
每當有人詢問筆者,馬達線材可承受的最大電流是多少? 腦中的第一個想法是要優先確認目標線材,馬達當中會有兩種線材需要確認電流狀況,分別為出口線及漆包線。若是詢問出口線的部分,那十分簡單,查閱電工法規就會告知多少電流需要使用多粗的線徑,甚至連絕緣皮膜的種類耐溫規範都直接規定,只需要照表操課就可以,如下圖
Thumbnail
每當有人詢問筆者,馬達線材可承受的最大電流是多少? 腦中的第一個想法是要優先確認目標線材,馬達當中會有兩種線材需要確認電流狀況,分別為出口線及漆包線。若是詢問出口線的部分,那十分簡單,查閱電工法規就會告知多少電流需要使用多粗的線徑,甚至連絕緣皮膜的種類耐溫規範都直接規定,只需要照表操課就可以,如下圖
Thumbnail
傳統馬達會利用調整電阻值的大小,來直接限制馬達輸入電流的上限;但電阻值的增加也會導致銅損值上升,是種如同雙面刃的技法。所幸隨著電控技術的進步,馬達電流的限制工作可以轉交給驅動電路掌控,馬達僅需要盡可能地降低電阻值即可;更直白的說就是漆包線徑越粗越好,暨可以降低馬達電阻,還同時強化散熱能力,以得到更優
Thumbnail
傳統馬達會利用調整電阻值的大小,來直接限制馬達輸入電流的上限;但電阻值的增加也會導致銅損值上升,是種如同雙面刃的技法。所幸隨著電控技術的進步,馬達電流的限制工作可以轉交給驅動電路掌控,馬達僅需要盡可能地降低電阻值即可;更直白的說就是漆包線徑越粗越好,暨可以降低馬達電阻,還同時強化散熱能力,以得到更優
Thumbnail
對筆者而言,這就是基於現實比小說更荒誕的情況下,會使用的轉換工具。本計算程式是基於已知當下的馬達繞線條件,包括漆包線徑及圈數後,計算出導體面積,之後在依照設計需求改換不同線徑時,可自動計算出圈數的變化;或是變動馬達設計圈數時,計算獲取新的漆包線徑值。由此可知,本工具是在固定槽滿率的條件之下,進行漆包
Thumbnail
對筆者而言,這就是基於現實比小說更荒誕的情況下,會使用的轉換工具。本計算程式是基於已知當下的馬達繞線條件,包括漆包線徑及圈數後,計算出導體面積,之後在依照設計需求改換不同線徑時,可自動計算出圈數的變化;或是變動馬達設計圈數時,計算獲取新的漆包線徑值。由此可知,本工具是在固定槽滿率的條件之下,進行漆包
Thumbnail
解決了馬達設計上的難題,下一步就是馬達生產上的困擾,以下分為不同的部分一一說明之。 一、繞法變化 平角線若採用傳統馬達繞線法,首先會遇到進出口線的空間問題,導致平角線無法使用傳統馬達線圈的堆疊方式;如下圖所示,會有起繞線堆疊在線圈最內側,需要有額外的空間讓線材跑出來,但平角線缺乏任意成形的自由度
Thumbnail
解決了馬達設計上的難題,下一步就是馬達生產上的困擾,以下分為不同的部分一一說明之。 一、繞法變化 平角線若採用傳統馬達繞線法,首先會遇到進出口線的空間問題,導致平角線無法使用傳統馬達線圈的堆疊方式;如下圖所示,會有起繞線堆疊在線圈最內側,需要有額外的空間讓線材跑出來,但平角線缺乏任意成形的自由度
Thumbnail
認識的友人詢問,才讓筆者再次想起馬達電流密度這項參數;事實上筆者已經不太使用這一設計指標了,但長久以來的馬達相關經歷,不免會有這樣的小工具在手上,因此分享給大家,檔案連結如下,請自行取用: 電流密度設計 電流密度計算的小工具分為兩種模式,分別為已知馬達功率的情況下,給定設定之電流密度目標,計算出
Thumbnail
認識的友人詢問,才讓筆者再次想起馬達電流密度這項參數;事實上筆者已經不太使用這一設計指標了,但長久以來的馬達相關經歷,不免會有這樣的小工具在手上,因此分享給大家,檔案連結如下,請自行取用: 電流密度設計 電流密度計算的小工具分為兩種模式,分別為已知馬達功率的情況下,給定設定之電流密度目標,計算出
Thumbnail
這是筆者常用的馬達設計調整手法,但原意是用於馬達工作電壓變換時,更改繞線條件的計算,如110V的馬達要更改為220V的使用電壓時,需針對繞線條件進行修改。會僅變更繞線條件而非整顆馬達修改,主要是其他材料的變動成本較高,而漆包線徑的調整是馬達當中最容易的項目;因此會發現市面上不同工作電壓的馬達外觀大小
Thumbnail
這是筆者常用的馬達設計調整手法,但原意是用於馬達工作電壓變換時,更改繞線條件的計算,如110V的馬達要更改為220V的使用電壓時,需針對繞線條件進行修改。會僅變更繞線條件而非整顆馬達修改,主要是其他材料的變動成本較高,而漆包線徑的調整是馬達當中最容易的項目;因此會發現市面上不同工作電壓的馬達外觀大小
Thumbnail
本文是針對馬達繞線時,想要依本身的生產能力調整漆包線徑粗度時,會使用到的轉換計算進行介紹及說明。 實際量產時往往將多條細線並繞的馬達,改由單條粗線採用機台繞線,較為省時;但開發階段,並無設備協助,僅能採用人工繞線打樣時,則會調整為多條細線並聯的模式才能順利工作,這類不同情境下的線徑變化,三不五時就
Thumbnail
本文是針對馬達繞線時,想要依本身的生產能力調整漆包線徑粗度時,會使用到的轉換計算進行介紹及說明。 實際量產時往往將多條細線並繞的馬達,改由單條粗線採用機台繞線,較為省時;但開發階段,並無設備協助,僅能採用人工繞線打樣時,則會調整為多條細線並聯的模式才能順利工作,這類不同情境下的線徑變化,三不五時就
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News