付費限定

三分鐘內由上帝視角理解LoRA,讓大模型成為達文西的秘訣

更新於 發佈於 閱讀時間約 4 分鐘

未來不管是Diffuser還是LLM的微調,都離不開LoRA這項技術,充分理解LoRA的本質是甚麼,CP值特別高。這項技術的理念其實在人工智慧領域行之有年,只是普遍沒有響亮的名字與非常痛的應用場合,在大模型參數量暴增的時刻,重要性被大幅凸顯出來。


降低參數量的手法:

一個矩陣最大的Rank(獨立向量個數),會取決於矩陣長與寬的最小值,也是獨立的特徵向量的最大總數,想要大幅度的減少矩陣大小,降低參數量,最簡單的方法就是減少矩陣的Rank數目,如下圖所示:

業界行之有年的參數縮減架構,原本的參數量500x500 = 25萬,降低Rank到100以後,只需要12萬個參數,Rank越小,需要調整的參數量越少

業界行之有年的參數縮減架構,原本的參數量500x500 = 25萬,降低Rank到100以後,只需要12萬個參數,Rank越小,需要調整的參數量越少

那該如何決定參數可以減少多少呢? Rank數取決於特徵值的大小,特徵值越大,特徵向量越重要,如下圖所示,滿Rank=20的矩陣會有約20%,4個Rank的重要性會占整體80%,這滿足了大數80/20法則,在一個訓練取得優秀成果的Model都會很自然地出現這個特性。如果要抓住Model整體的精神宗旨,只要抓住20%,也就是4個Rank的量,這樣就能節省非常多的參數,代價是會損失一些細部的模型理解能力。

raw-image

LoRA的上帝視角:

LoRA (Low-Rank Adaptation of Large Language Models) 可以看成是超級大模型的外掛程式,做微調的時候,可以保持原模型不變,外掛分支,如下圖所示的架構:

raw-image
以行動支持創作者!付費即可解鎖
本篇內容共 1983 字、0 則留言,僅發佈於人工智慧宇宙你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
無限智慧學院的沙龍
95會員
128內容數
帶你用上帝視角,針對市面上具有高度價值的影片/論文/書籍,用東方取象,與西方邏輯辯證的角度同時出發,跟著我一起來探討宇宙萬事萬物的本質,隨時隨地都可以來一場說走就走的思維旅行。作者在台積電 / 聯發科等科技產業有累計10年的資歷,近期對於人工智慧,東方易經,西方辯證邏輯,還有佛法向內求有深度興趣。
2023/11/06
如何評量一個大型語言模型有學到東西? 其中一個常用指標就是Perplexity(困惑度)。由於困惑度被大量論文引用,學習CP值很高,所以寫專文介紹。
Thumbnail
2023/11/06
如何評量一個大型語言模型有學到東西? 其中一個常用指標就是Perplexity(困惑度)。由於困惑度被大量論文引用,學習CP值很高,所以寫專文介紹。
Thumbnail
2023/11/02
根據熱力學熵增鐵律,多數人認為宇宙會最終會進入熱寂(亂度散度最大化),然後死去,但事實或許不然,一年有四季,日昇日落,大自然注定是生生不息,循環往復的,有鑑於近來大量閱讀AI關於模型與映射的概念,突然靈光乍現,想出了一套能讓宇宙生生不息的假說,讓我們一起來逐步論證!
Thumbnail
2023/11/02
根據熱力學熵增鐵律,多數人認為宇宙會最終會進入熱寂(亂度散度最大化),然後死去,但事實或許不然,一年有四季,日昇日落,大自然注定是生生不息,循環往復的,有鑑於近來大量閱讀AI關於模型與映射的概念,突然靈光乍現,想出了一套能讓宇宙生生不息的假說,讓我們一起來逐步論證!
Thumbnail
2023/11/01
相信有不少人在剛接觸Attention is all you need這篇論文的時候,最感到困惑的就是Positional Encoding,知道公式長怎樣,不外乎就是Cosine / Sine,但始終無法直搗黃龍,理解背後的道理,本篇文提供各種觀點,讓你三分鐘內搞懂!
Thumbnail
2023/11/01
相信有不少人在剛接觸Attention is all you need這篇論文的時候,最感到困惑的就是Positional Encoding,知道公式長怎樣,不外乎就是Cosine / Sine,但始終無法直搗黃龍,理解背後的道理,本篇文提供各種觀點,讓你三分鐘內搞懂!
Thumbnail
看更多
你可能也想看
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
提供一條簡單公式、一套盤點思路,幫助你快速算出去日本自助旅遊需要準備多少日幣現金!
Thumbnail
提供一條簡單公式、一套盤點思路,幫助你快速算出去日本自助旅遊需要準備多少日幣現金!
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 93 介紹了 The Corpus of Linguistic Acceptability (CoLA),其核心思想為:如果該句子在語
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 76 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 76 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 75 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 75 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
未來不管是Diffuser還是LLM的微調,都離不開LoRA這項技術,充分理解LoRA的本質是甚麼,CP值特別高。這項技術的理念其實在人工智慧領域行之有年,只是普遍沒有響亮的名字與非常痛的應用場合,在大模型參數量暴增的時刻,重要性被大幅凸顯出來。
Thumbnail
未來不管是Diffuser還是LLM的微調,都離不開LoRA這項技術,充分理解LoRA的本質是甚麼,CP值特別高。這項技術的理念其實在人工智慧領域行之有年,只是普遍沒有響亮的名字與非常痛的應用場合,在大模型參數量暴增的時刻,重要性被大幅凸顯出來。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News