尋犀記 (9)

更新於 發佈於 閱讀時間約 2 分鐘

九、協變導數

在平坦的歐式平面 (flat Euclidean plane) 上,方向導數 (directional derivative) 被定義為、兩個鄰近的點的方向向量之差,這也就是,把一個向量、平行輸運 (parallel transport) 到另一個向量的原點之上,然後求它們的差。

此時,我們無須掛心、基底向量由於座標改變所導致的變異為何;這是因為,在平坦的平面上,向量平行移動、不會有基底向量隨著改變之效應產生,換句話說,「向量從某個點、平行移動到另一個點、而仍然能夠保持恆定」,在平坦平面的範圍內、是有意義的。

平坦平面、和彎曲平面的關鍵差異在於:當我們把向量、從彎曲平面上的某個點、平行輸運 (parallel transport) 到另一個點時,其結果、將取決於我們所選擇的路徑。

換言之,若使一個向量在任意曲面的不同條測地線上平行移動,而分別從不同的路徑、到達相同的終點時,在最終處,兩個來自不同路徑的、被平行輸運 (parallel transported) 而來的「兩個」向量、並不會重疊在一起;曲面的彎曲程度愈大,兩個向量的偏移、也就愈大。

在平坦的歐式平面 (flat Euclidean plane) 上,協變導數 (covariant derivative) 只不過是單純的向量場的微分,但在非歐平面 (non-Euclidean plane) 上,則要進一步考慮由於座標之改變所導致的、微小變異之程度。

曲線的切向量可以描述為一組基底向量之組成:

V⃗ = V¹ g⃗₁ + V² g⃗₂

這可以簡寫為:

V⃗ = Vᵐ g⃗ₘ

如前所述,協變導數 (covariant derivative) 乃是以與基底向量協變之方式、來衡量自身、及其因座標改變所導致的、微小變異之程度。

此即:

∂/∂Xᵏ V⃗

= ∂/∂Xᵏ (Vᵐ g⃗ₘ)

= (∂/∂Xᵏ Vᵐ) g⃗ₘ + Vᵐ (∂/∂Xᵏ g⃗ₘ)

= (∂/∂Xᵏ Vᵐ) g⃗ₘ + Vᵐ (Γˡₘₖ g⃗ₗ)

= (∂/∂Xᵏ Vᵐ) g⃗ₘ + Vⁿ (Γᵐₙₖ g⃗ₘ)

= (∂/∂Xᵏ Vᵐ) g⃗ₘ + (Vⁿ Γᵐₙₖ) g⃗ₘ

= (∂/∂Xᵏ Vᵐ + Vⁿ Γᵐₙₖ) g⃗ₘ

這可以表示為:

∇ₖ Vᵐ = ∂/∂Xᵏ Vᵐ + Vⁿ Γᵐₙₖ

= ∂ₖ Vᵐ + Γᵐₙₖ Vⁿ

在直覺上,直線就是「直直」延伸的一條線。在幾何上,直線則被定義為:兩點間、距離最短的路徑;但此時,還有一個同樣好的定義:直線乃是能夠平行輸運一個向量、從某個點至另一個點的路徑。

依此,測地線 (geodesic) 乃是歐氏平面的「直線」概念、在彎曲平面之推廣。

avatar-img
3會員
45內容數
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
在我死前的沙龍 的其他內容
在二維的歐式平面 (Euclidean plane) 上,沿著曲線座標 (curvilinear coordinates) 之方向,有二個基底向量 (basis vectors) g⃗₁、和 g⃗₂,它們構成了微小的曲面塊 (surface patch),而度量張量 (metric tensor)
前面幾篇一直反覆提到,奠定幾何磐石的畢氏定理: x² + y² = r² 可以轉換為畢氏定理的向量表達: x x̂ + y ŷ = r r̂
與偏導數 (partial derivative) 不同,全導數 (total derivative) 乃根據所有分量 (而非僅是單一分量) 之微小移動、所產生的各別對於函數數值的貢獻,來逼近函數本身的「值」之微小改變。
在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
「直角三角形,其兩邊的平方之和、等於斜邊的平方。」 這就是著名的畢氏定理,可以表示為:
遞迴 (recurrence) 即是不停地返回自己的意思。 遞 = 依次;迴 = 返回。
在二維的歐式平面 (Euclidean plane) 上,沿著曲線座標 (curvilinear coordinates) 之方向,有二個基底向量 (basis vectors) g⃗₁、和 g⃗₂,它們構成了微小的曲面塊 (surface patch),而度量張量 (metric tensor)
前面幾篇一直反覆提到,奠定幾何磐石的畢氏定理: x² + y² = r² 可以轉換為畢氏定理的向量表達: x x̂ + y ŷ = r r̂
與偏導數 (partial derivative) 不同,全導數 (total derivative) 乃根據所有分量 (而非僅是單一分量) 之微小移動、所產生的各別對於函數數值的貢獻,來逼近函數本身的「值」之微小改變。
在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
「直角三角形,其兩邊的平方之和、等於斜邊的平方。」 這就是著名的畢氏定理,可以表示為:
遞迴 (recurrence) 即是不停地返回自己的意思。 遞 = 依次;迴 = 返回。
你可能也想看
Google News 追蹤
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
向量座標表示法(一) 向量座標表示法(二) 向量座標表示法(三) 向量長度(一) 向量長度(二) 向量長度(三) 平面向量正射影(一) 向量分點公式(一) 向量分點公式(二) 平面向量內積(一) 平面向量內積(二) 平面向量內積(三) 平面向量內積(四) 兩向量夾角(一)
Thumbnail
符號簡介: 空間中的一點可由三個座標值(q1,q2,q3)決定,其中qn就是所謂的座標表法。 接下來會以V表示純量函數,A表向量函數,其中,Aqn是A在qn方
Thumbnail
面積向量 : 面積向量可以視為和一表面垂直的向量,同一面上有正反兩個表面,兩表面上的面積向量為反向。 以下有三種以後常遇到的面積向量形式,分別為: 圓形導
Thumbnail
這一節談的是向量的定義,以及如何運用向量來建立模擬物體運動時,關於位置和速度間的關係式。
這一章介紹向量(vector)這個在物理、工程等領域非常重要的數學工具,以及如何用它來模擬一些物理現象。
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
在前篇討論到純粹在基本熱力學的角度而言,似乎不存在什麼自發秩序,不過這僅限基礎概念而言。如果拓展到其他物理學的面向後,再去看待何謂秩序,就會有不同的討論。
在人類長年來的各種發展而言,都會討論到世界似乎存在某種潛在的方向性,在陰陽五行的領域就會說是「道」,而在近代思想,最類似的可能是海耶克的「自發秩序」的概念。 個人認為,這些概念其實可以從當代物理的對稱性與對稱破缺的角度,給予相對具體的理解途徑。
Thumbnail
大家好,我是woody,是一名料理創作者,非常努力地在嘗試將複雜的料理簡單化,讓大家也可以體驗到料理的樂趣而我也非常享受料理的過程,今天想跟大家聊聊,除了料理本身,料理創作背後的成本。
Thumbnail
哈囉~很久沒跟各位自我介紹一下了~ 大家好~我是爺恩 我是一名圖文插畫家,有追蹤我一段時間的應該有發現爺恩這個品牌經營了好像.....快五年了(汗)時間過得真快!隨著時間過去,創作這件事好像變得更忙碌了,也很開心跟很多厲害的創作者以及廠商互相合作幫忙,還有最重要的是大家的支持與陪伴🥹。  
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
向量座標表示法(一) 向量座標表示法(二) 向量座標表示法(三) 向量長度(一) 向量長度(二) 向量長度(三) 平面向量正射影(一) 向量分點公式(一) 向量分點公式(二) 平面向量內積(一) 平面向量內積(二) 平面向量內積(三) 平面向量內積(四) 兩向量夾角(一)
Thumbnail
符號簡介: 空間中的一點可由三個座標值(q1,q2,q3)決定,其中qn就是所謂的座標表法。 接下來會以V表示純量函數,A表向量函數,其中,Aqn是A在qn方
Thumbnail
面積向量 : 面積向量可以視為和一表面垂直的向量,同一面上有正反兩個表面,兩表面上的面積向量為反向。 以下有三種以後常遇到的面積向量形式,分別為: 圓形導
Thumbnail
這一節談的是向量的定義,以及如何運用向量來建立模擬物體運動時,關於位置和速度間的關係式。
這一章介紹向量(vector)這個在物理、工程等領域非常重要的數學工具,以及如何用它來模擬一些物理現象。
Thumbnail
直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
在前篇討論到純粹在基本熱力學的角度而言,似乎不存在什麼自發秩序,不過這僅限基礎概念而言。如果拓展到其他物理學的面向後,再去看待何謂秩序,就會有不同的討論。
在人類長年來的各種發展而言,都會討論到世界似乎存在某種潛在的方向性,在陰陽五行的領域就會說是「道」,而在近代思想,最類似的可能是海耶克的「自發秩序」的概念。 個人認為,這些概念其實可以從當代物理的對稱性與對稱破缺的角度,給予相對具體的理解途徑。