尋犀記 (9)

更新於 2024/12/01閱讀時間約 2 分鐘

九、協變導數

在平坦的歐式平面 (flat Euclidean plane) 上,方向導數 (directional derivative) 被定義為、兩個鄰近的點的方向向量之差,這也就是,把一個向量、平行輸運 (parallel transport) 到另一個向量的原點之上,然後求它們的差。

此時,我們無須掛心、基底向量由於座標改變所導致的變異為何;這是因為,在平坦的平面上,向量平行移動、不會有基底向量隨著改變之效應產生,換句話說,「向量從某個點、平行移動到另一個點、而仍然能夠保持恆定」,在平坦平面的範圍內、是有意義的。

平坦平面、和彎曲平面的關鍵差異在於:當我們把向量、從彎曲平面上的某個點、平行輸運 (parallel transport) 到另一個點時,其結果、將取決於我們所選擇的路徑。

換言之,若使一個向量在任意曲面的不同條測地線上平行移動,而分別從不同的路徑、到達相同的終點時,在最終處,兩個來自不同路徑的、被平行輸運 (parallel transported) 而來的「兩個」向量、並不會重疊在一起;曲面的彎曲程度愈大,兩個向量的偏移、也就愈大。

在平坦的歐式平面 (flat Euclidean plane) 上,協變導數 (covariant derivative) 只不過是單純的向量場的微分,但在非歐平面 (non-Euclidean plane) 上,則要進一步考慮由於座標之改變所導致的、微小變異之程度。

曲線的切向量可以描述為一組基底向量之組成:

V⃗ = V¹ g⃗₁ + V² g⃗₂

這可以簡寫為:

V⃗ = Vᵐ g⃗ₘ

如前所述,協變導數 (covariant derivative) 乃是以與基底向量協變之方式、來衡量自身、及其因座標改變所導致的、微小變異之程度。

此即:

∂/∂Xᵏ V⃗

= ∂/∂Xᵏ (Vᵐ g⃗ₘ)

= (∂/∂Xᵏ Vᵐ) g⃗ₘ + Vᵐ (∂/∂Xᵏ g⃗ₘ)

= (∂/∂Xᵏ Vᵐ) g⃗ₘ + Vᵐ (Γˡₘₖ g⃗ₗ)

= (∂/∂Xᵏ Vᵐ) g⃗ₘ + Vⁿ (Γᵐₙₖ g⃗ₘ)

= (∂/∂Xᵏ Vᵐ) g⃗ₘ + (Vⁿ Γᵐₙₖ) g⃗ₘ

= (∂/∂Xᵏ Vᵐ + Vⁿ Γᵐₙₖ) g⃗ₘ

這可以表示為:

∇ₖ Vᵐ = ∂/∂Xᵏ Vᵐ + Vⁿ Γᵐₙₖ

= ∂ₖ Vᵐ + Γᵐₙₖ Vⁿ

在直覺上,直線就是「直直」延伸的一條線。在幾何上,直線則被定義為:兩點間、距離最短的路徑;但此時,還有一個同樣好的定義:直線乃是能夠平行輸運一個向量、從某個點至另一個點的路徑。

依此,測地線 (geodesic) 乃是歐氏平面的「直線」概念、在彎曲平面之推廣。

    avatar-img
    3會員
    45內容數
    留言0
    查看全部
    avatar-img
    發表第一個留言支持創作者!
    在我死前的沙龍 的其他內容
    在二維的歐式平面 (Euclidean plane) 上,沿著曲線座標 (curvilinear coordinates) 之方向,有二個基底向量 (basis vectors) g⃗₁、和 g⃗₂,它們構成了微小的曲面塊 (surface patch),而度量張量 (metric tensor)
    前面幾篇一直反覆提到,奠定幾何磐石的畢氏定理: x² + y² = r² 可以轉換為畢氏定理的向量表達: x x̂ + y ŷ = r r̂
    與偏導數 (partial derivative) 不同,全導數 (total derivative) 乃根據所有分量 (而非僅是單一分量) 之微小移動、所產生的各別對於函數數值的貢獻,來逼近函數本身的「值」之微小改變。
    在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
    「直角三角形,其兩邊的平方之和、等於斜邊的平方。」 這就是著名的畢氏定理,可以表示為:
    遞迴 (recurrence) 即是不停地返回自己的意思。 遞 = 依次;迴 = 返回。
    在二維的歐式平面 (Euclidean plane) 上,沿著曲線座標 (curvilinear coordinates) 之方向,有二個基底向量 (basis vectors) g⃗₁、和 g⃗₂,它們構成了微小的曲面塊 (surface patch),而度量張量 (metric tensor)
    前面幾篇一直反覆提到,奠定幾何磐石的畢氏定理: x² + y² = r² 可以轉換為畢氏定理的向量表達: x x̂ + y ŷ = r r̂
    與偏導數 (partial derivative) 不同,全導數 (total derivative) 乃根據所有分量 (而非僅是單一分量) 之微小移動、所產生的各別對於函數數值的貢獻,來逼近函數本身的「值」之微小改變。
    在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
    「直角三角形,其兩邊的平方之和、等於斜邊的平方。」 這就是著名的畢氏定理,可以表示為:
    遞迴 (recurrence) 即是不停地返回自己的意思。 遞 = 依次;迴 = 返回。
    你可能也想看
    Google News 追蹤
    Thumbnail
    *合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
    Thumbnail
    你工作時如果還在用 Google 搜尋作為主要的搜尋方式,那我只能說太可惜了! 今天想分享一個最近聲量很高的數位工具: Perplexity Perplexity 是什麼?跟 Google 又差在哪?怎麼用它提升工作效率? 創作者與品牌將會受到什麼影響?又該如何因應?
    Thumbnail
    斐濟號(HMS Fiji)是英國皇家海軍斐濟級輕巡洋艦斐濟亞型的一號艦。她於1940年中期完工,最初被分配到本土艦隊,並被派去護送一支部隊,其任務是迫使法國西非加入自由法國。該船在途中被魚雷擊中,需要六個月的時間才能修復。斐濟號隨後被分配到H部隊,幫助護送船隊前往馬爾他。
    Thumbnail
    本文介紹2025年奧斯卡愛爾蘭代表《嘻蓋骨男孩》,以Hip-Hop音樂捍衛並推廣愛爾蘭語的組合Kneecap為題材的自傳電影,除了他們的發跡史,電影製作的歷程,亦稍探討愛爾蘭語的現狀。
    Thumbnail
    前篇提到,任意向量 V⃗ 可以描述為一組基底向量之組成: V⃗ = V¹ g⃗₁ + V² g⃗₂ 這可以簡寫為: V⃗ = Vᵐ g⃗ₘ
    Thumbnail
    在平坦的歐式平面 (flat Euclidean plane) 上,方向導數 (directional derivative) 被定義為、兩個鄰近的點的方向向量之差,這也就是,把一個向量、平行輸運 (parallel transport) 到另一個向量的原點之上,然後求它們的差。
    Thumbnail
    肺炎病毒疫情事件與全球化國際經濟情勢退縮,聯準會雖然一度錯誤判斷通膨的嚴重性。過去利率曾高達20%,光銀行定存就有14%,但借鏡歷史下實施升息計劃以積極對抗通膨。 2022至今年的最高通膨率高達9%,影響通膨的主因有:原油、租金、工資,必須關注有無「螺旋式通膨」形成,觀察暴力升息後經濟衰退是否會來
    Thumbnail
    缺少自制力的人自主訓練很容易沒有好的成效,我承認我就是個跑步的懶惰鬼,今天好累改成明天練習好了,然後明日復明日,又或是不想逼迫自己,心跳一拉上去就想休息,總之有一千種偷懶的理由,永遠不會進步。
    去過了兩次學習到許多知識的有趣戶外教學後,老師又再次帶著我們去了另外一個跟醬油有關的戶外教學:「醬油原料尋寶記」。 首先老師帶我們去了甘蔗田聽甘蔗田的主人講解甘蔗、折甘蔗的方法等等有關甘蔗的知識,順便取得釀醬油時會用到的黑糖。講解完後親自折了一個甘蔗示範給我們看,接著讓五甲的同學去折看看,最後讓我
    Thumbnail
    「北投(Patauw)」這個地名,來自居住在這片土地上的平埔族北投社 隨著導覽老師的腳步,一步步往前走進北投公園裡........
    Thumbnail
    你知道現實生活有時候比電視上的戲劇還要扯嗎? ???????????????!!!!!!!!!!!!!!!!!!!! 一陣手忙腳亂在機場裡面衝來衝去,終於上飛機那一刻真的很想哭,弄得我滿身大汗,所以這一趟睡超好哈哈哈哈哈哈哈 1.搭纜車和玩滑車(Skyline Gondola & Luge)
    Thumbnail
    *合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
    Thumbnail
    你工作時如果還在用 Google 搜尋作為主要的搜尋方式,那我只能說太可惜了! 今天想分享一個最近聲量很高的數位工具: Perplexity Perplexity 是什麼?跟 Google 又差在哪?怎麼用它提升工作效率? 創作者與品牌將會受到什麼影響?又該如何因應?
    Thumbnail
    斐濟號(HMS Fiji)是英國皇家海軍斐濟級輕巡洋艦斐濟亞型的一號艦。她於1940年中期完工,最初被分配到本土艦隊,並被派去護送一支部隊,其任務是迫使法國西非加入自由法國。該船在途中被魚雷擊中,需要六個月的時間才能修復。斐濟號隨後被分配到H部隊,幫助護送船隊前往馬爾他。
    Thumbnail
    本文介紹2025年奧斯卡愛爾蘭代表《嘻蓋骨男孩》,以Hip-Hop音樂捍衛並推廣愛爾蘭語的組合Kneecap為題材的自傳電影,除了他們的發跡史,電影製作的歷程,亦稍探討愛爾蘭語的現狀。
    Thumbnail
    前篇提到,任意向量 V⃗ 可以描述為一組基底向量之組成: V⃗ = V¹ g⃗₁ + V² g⃗₂ 這可以簡寫為: V⃗ = Vᵐ g⃗ₘ
    Thumbnail
    在平坦的歐式平面 (flat Euclidean plane) 上,方向導數 (directional derivative) 被定義為、兩個鄰近的點的方向向量之差,這也就是,把一個向量、平行輸運 (parallel transport) 到另一個向量的原點之上,然後求它們的差。
    Thumbnail
    肺炎病毒疫情事件與全球化國際經濟情勢退縮,聯準會雖然一度錯誤判斷通膨的嚴重性。過去利率曾高達20%,光銀行定存就有14%,但借鏡歷史下實施升息計劃以積極對抗通膨。 2022至今年的最高通膨率高達9%,影響通膨的主因有:原油、租金、工資,必須關注有無「螺旋式通膨」形成,觀察暴力升息後經濟衰退是否會來
    Thumbnail
    缺少自制力的人自主訓練很容易沒有好的成效,我承認我就是個跑步的懶惰鬼,今天好累改成明天練習好了,然後明日復明日,又或是不想逼迫自己,心跳一拉上去就想休息,總之有一千種偷懶的理由,永遠不會進步。
    去過了兩次學習到許多知識的有趣戶外教學後,老師又再次帶著我們去了另外一個跟醬油有關的戶外教學:「醬油原料尋寶記」。 首先老師帶我們去了甘蔗田聽甘蔗田的主人講解甘蔗、折甘蔗的方法等等有關甘蔗的知識,順便取得釀醬油時會用到的黑糖。講解完後親自折了一個甘蔗示範給我們看,接著讓五甲的同學去折看看,最後讓我
    Thumbnail
    「北投(Patauw)」這個地名,來自居住在這片土地上的平埔族北投社 隨著導覽老師的腳步,一步步往前走進北投公園裡........
    Thumbnail
    你知道現實生活有時候比電視上的戲劇還要扯嗎? ???????????????!!!!!!!!!!!!!!!!!!!! 一陣手忙腳亂在機場裡面衝來衝去,終於上飛機那一刻真的很想哭,弄得我滿身大汗,所以這一趟睡超好哈哈哈哈哈哈哈 1.搭纜車和玩滑車(Skyline Gondola & Luge)