尋犀記 (6)

閱讀時間約 3 分鐘

六、全導數於三維幾何之意義

與偏導數 (partial derivative) 不同,全導數 (total derivative) 乃根據所有分量 (而非僅是單一分量) 之微小移動、所產生的各別對於函數數值的貢獻,來逼近函數本身的「值」之微小改變。

此即:

dz = ∂z/∂x dx + ∂z/∂y dy

上式之文字敘述、為:函數本身的「值」之微小改變,等於其各個分量之微小移動、所產生的對於函數數值的貢獻,之加總。

在三維空間中,經由函數的位置向量 R⃗ 沿著 x、y 軸方向之微小移動、所得到的偏導數向量 dR⃗ₓ、和 dR⃗ᵧ,分別構成函數的切平面 (tangent plane) 之兩軸。

切平面沿著 x̂ 側的軸,即 dR⃗ₓ;沿著 ŷ 側的軸,即 dR⃗ᵧ。此二向量之加總,即是由切點出發、而行進至切平面的對角點之對角向量 dR⃗。

此即:

dR⃗ = dR⃗ₓ + dR⃗ᵧ

解析而言:

dR⃗ₓ 乃是沿著 x̂ 前進、走了 dx,再沿著 ẑ 往上、走了 dzₓ,所得到的向量。

dR⃗ᵧ 乃是沿著 ŷ 前進、走了 dy,再沿著 ẑ 往上、走了 dzᵧ,所得到的向量。

此即:

dR⃗ₓ = dx x̂ + dzₓ ẑ

dR⃗ᵧ = dy ŷ + dzᵧ ẑ

而在三維空間中,因 x 分量的微小移動、所產生的對於函數數值的貢獻、為 dzₓ;因 y 分量的微小移動、所產生的對於函數數值的貢獻、為 dzᵧ;對角向量 dR⃗ 之高、為 dz。

現在,我們要問的是,如何證明: dz = dzₓ + dzᵧ?

已知,切平面的兩軸,dR⃗ₓ、和 dR⃗ᵧ,之加總,即是對角向量 dR⃗;再將它們沿著 ẑ 往上行進的路程、置於最後項,即可得到所要的結果。

此即:

dR⃗ = dR⃗ₓ + dR⃗ᵧ

= (dx x̂ + dzₓ ẑ) + (dy ŷ + dzᵧ ẑ)

= dx x̂ + dy ŷ + (dzₓ + dzᵧ) ẑ

= dx x̂ + dy ŷ + (dz) ẑ

這就證明了:

dz = dzₓ + dzᵧ

用向量相加的方法、給予全導數以幾何的直觀意義,十分地簡單直接。而事實上,前段的敘述、即是畢氏定理在三維空間的推廣。

進而,二維的梯度向量 (gradient vector) 亦可以視為是斜率導數 (slope derivative) 在二維平面上的推廣。

此即:

dy = y′(x) dx

dz = ∂z/∂x dx + ∂z/∂y dy

= ∇ z(x, y) · dR⃗𝓏₀

其中,dR⃗𝓏₀ 為對角向量 dR⃗ 在 xy 平面上的投影。

然而,二維的梯度向量 ∇ z(x, y) 卻應視為是三維空間的梯度向量 ∇ w(x, y, z) 在 xy 平面上的投影,亦即,是一種壓縮。

是故,一般化而言,可以將在三維空間中的位置向量 R⃗ 表示為:

R⃗ = (x, y, z(x, y))

其全導數為:

dR⃗ = dR⃗ₓ + dR⃗ᵧ

= ∂R⃗/∂x dx + ∂R⃗/∂y dy

= (1, 0, ∂z/∂x) dx + (0, 1, ∂z/∂y) dy

= (dx, dy, ∂z/∂x dx + ∂z/∂y dy)

= (dx, dy, ∇ z(x, y) · dR⃗𝓏₀)

而最後之分量,即是切平面的兩軸,dR⃗ₓ、和 dR⃗ᵧ,沿著 ẑ 往上行進的路程之加總。

    avatar-img
    3會員
    45內容數
    留言0
    查看全部
    avatar-img
    發表第一個留言支持創作者!
    在我死前的沙龍 的其他內容
    在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
    「直角三角形,其兩邊的平方之和、等於斜邊的平方。」 這就是著名的畢氏定理,可以表示為:
    遞迴 (recurrence) 即是不停地返回自己的意思。 遞 = 依次;迴 = 返回。
    Syracuse 位於現今義大利半島南端海外、西西里島的東南海岸,是當時大希臘的自治殖民地。
    近代考古發現的幾塊巴比倫泥板證實了:早在Pythagoras 的一千多年以前,巴比倫人就已經知道現在的「畢氏定理」;所以,我們所稱的「畢氏定理」、應該是Pythagoras 在那裡學習到的知識,不過,他可能是第一個證明它的人。
    他總是自命不凡 他總是多愁善感
    在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
    「直角三角形,其兩邊的平方之和、等於斜邊的平方。」 這就是著名的畢氏定理,可以表示為:
    遞迴 (recurrence) 即是不停地返回自己的意思。 遞 = 依次;迴 = 返回。
    Syracuse 位於現今義大利半島南端海外、西西里島的東南海岸,是當時大希臘的自治殖民地。
    近代考古發現的幾塊巴比倫泥板證實了:早在Pythagoras 的一千多年以前,巴比倫人就已經知道現在的「畢氏定理」;所以,我們所稱的「畢氏定理」、應該是Pythagoras 在那裡學習到的知識,不過,他可能是第一個證明它的人。
    他總是自命不凡 他總是多愁善感
    你可能也想看
    Google News 追蹤
    Thumbnail
    這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
    Thumbnail
    11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
    Thumbnail
    Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
    Thumbnail
    肺炎病毒疫情事件與全球化國際經濟情勢退縮,聯準會雖然一度錯誤判斷通膨的嚴重性。過去利率曾高達20%,光銀行定存就有14%,但借鏡歷史下實施升息計劃以積極對抗通膨。 2022至今年的最高通膨率高達9%,影響通膨的主因有:原油、租金、工資,必須關注有無「螺旋式通膨」形成,觀察暴力升息後經濟衰退是否會來
    Thumbnail
    缺少自制力的人自主訓練很容易沒有好的成效,我承認我就是個跑步的懶惰鬼,今天好累改成明天練習好了,然後明日復明日,又或是不想逼迫自己,心跳一拉上去就想休息,總之有一千種偷懶的理由,永遠不會進步。
    去過了兩次學習到許多知識的有趣戶外教學後,老師又再次帶著我們去了另外一個跟醬油有關的戶外教學:「醬油原料尋寶記」。 首先老師帶我們去了甘蔗田聽甘蔗田的主人講解甘蔗、折甘蔗的方法等等有關甘蔗的知識,順便取得釀醬油時會用到的黑糖。講解完後親自折了一個甘蔗示範給我們看,接著讓五甲的同學去折看看,最後讓我
    Thumbnail
    「北投(Patauw)」這個地名,來自居住在這片土地上的平埔族北投社 隨著導覽老師的腳步,一步步往前走進北投公園裡........
    Thumbnail
    你知道現實生活有時候比電視上的戲劇還要扯嗎? ???????????????!!!!!!!!!!!!!!!!!!!! 一陣手忙腳亂在機場裡面衝來衝去,終於上飛機那一刻真的很想哭,弄得我滿身大汗,所以這一趟睡超好哈哈哈哈哈哈哈 1.搭纜車和玩滑車(Skyline Gondola & Luge)
    Thumbnail
    瑜珈是種循序漸進的SM行為。   是在享受瑜珈還是在享受疼痛,而且最驚人的是,練著練著就迷上了。
    Thumbnail
    這算是今年的第一篇理財文,也是簡單統整了之前的幾篇理財文後,將理財做個小小的總結,並透過這3個步驟來幫助對理財沒有概念的人,來依序完成自己的財務整理與規劃。
    Thumbnail
    「我們住在蒙特婁」,那時我與 Laurence 都跟台灣的親朋好友這樣說。其實,我們住的地方,距離大家心中所想像的蒙特婁還有點遠,正確來說,我們住在蒙特婁島上的 LaSalle 市,有自己的市政府。
    Thumbnail
    投資特別股最大好處是每年固定配息,即使公司獲利情況有高有低,也不用擔心股利會減少。
    Thumbnail
    這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
    Thumbnail
    11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
    Thumbnail
    Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
    Thumbnail
    肺炎病毒疫情事件與全球化國際經濟情勢退縮,聯準會雖然一度錯誤判斷通膨的嚴重性。過去利率曾高達20%,光銀行定存就有14%,但借鏡歷史下實施升息計劃以積極對抗通膨。 2022至今年的最高通膨率高達9%,影響通膨的主因有:原油、租金、工資,必須關注有無「螺旋式通膨」形成,觀察暴力升息後經濟衰退是否會來
    Thumbnail
    缺少自制力的人自主訓練很容易沒有好的成效,我承認我就是個跑步的懶惰鬼,今天好累改成明天練習好了,然後明日復明日,又或是不想逼迫自己,心跳一拉上去就想休息,總之有一千種偷懶的理由,永遠不會進步。
    去過了兩次學習到許多知識的有趣戶外教學後,老師又再次帶著我們去了另外一個跟醬油有關的戶外教學:「醬油原料尋寶記」。 首先老師帶我們去了甘蔗田聽甘蔗田的主人講解甘蔗、折甘蔗的方法等等有關甘蔗的知識,順便取得釀醬油時會用到的黑糖。講解完後親自折了一個甘蔗示範給我們看,接著讓五甲的同學去折看看,最後讓我
    Thumbnail
    「北投(Patauw)」這個地名,來自居住在這片土地上的平埔族北投社 隨著導覽老師的腳步,一步步往前走進北投公園裡........
    Thumbnail
    你知道現實生活有時候比電視上的戲劇還要扯嗎? ???????????????!!!!!!!!!!!!!!!!!!!! 一陣手忙腳亂在機場裡面衝來衝去,終於上飛機那一刻真的很想哭,弄得我滿身大汗,所以這一趟睡超好哈哈哈哈哈哈哈 1.搭纜車和玩滑車(Skyline Gondola & Luge)
    Thumbnail
    瑜珈是種循序漸進的SM行為。   是在享受瑜珈還是在享受疼痛,而且最驚人的是,練著練著就迷上了。
    Thumbnail
    這算是今年的第一篇理財文,也是簡單統整了之前的幾篇理財文後,將理財做個小小的總結,並透過這3個步驟來幫助對理財沒有概念的人,來依序完成自己的財務整理與規劃。
    Thumbnail
    「我們住在蒙特婁」,那時我與 Laurence 都跟台灣的親朋好友這樣說。其實,我們住的地方,距離大家心中所想像的蒙特婁還有點遠,正確來說,我們住在蒙特婁島上的 LaSalle 市,有自己的市政府。
    Thumbnail
    投資特別股最大好處是每年固定配息,即使公司獲利情況有高有低,也不用擔心股利會減少。