付費限定

Reshape Data: Melt 融合不同的資料欄位_Intro to Pandas

更新於 2024/01/09閱讀時間約 7 分鐘

題目敘述

題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表為基礎,融合不同的資料欄位。

以product作為index,融合quarter_1,quarter_2,quarter_3,quarter_4 這四個欄位,並且重新命名為quarter,並且將數值欄位名稱重新命名為sales。


題目的原文敘述


測試範例

Example 1:

Input:
+-------------+-----------+-----------+-----------+-----------+
| product | quarter_1 | quarter_2 | quarter_3 | quarter_4 |
+-------------+-----------+-----------+-----------+-----------+
| Umbrella | 417 | 224 | 379 | 611 |
| SleepingBag | 800 | 936 | 93 | 875 |
+-------------+-----------+-----------+-----------+-----------+
Output:
+-------------+-----------+-------+
| product | quarter | sales |
+-------------+-----------+-------+
| Umbrella | quarter_1 | 417 |
| SleepingBag | quarter_1 | 800 |
| Umbrella | quarter_2 | 224 |
| SleepingBag | quarter_2 | 936 |
| Umbrella | quarter_3 | 379 |
| SleepingBag | quarter_3 | 93 |
| Umbrella | quarter_4 | 611 |
| SleepingBag | quarter_4 | 875 |
+-------------+-----------+-------+
Explanation:
The DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter.

以product作為index,融合quarter_1,quarter_2,quarter_3,quarter_4 這四個欄位,並且重新命名為quarter,
並且將數值欄位名稱重新命名為sales。

演算法

以行動支持創作者!付費即可解鎖
本篇內容共 3024 字、0 則留言,僅發佈於Intro. to Pandas 入門題解你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
90會員
425內容數
由有業界實戰經驗的演算法工程師, 手把手教你建立解題的框架, 一步步寫出高效、清晰易懂的解題答案。 著重在讓讀者啟發思考、理解演算法,熟悉常見的演算法模板。 深入淺出地介紹題目背後所使用的演算法意義,融會貫通演算法與資料結構的應用。 在幾個經典的題目融入一道題目的多種解法,或者同一招解不同的題目,擴展廣度,並加深印象。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表為基礎,將資料表做樞紐轉換,垂直方向是月份,水平方向是不同的城市,而表格內容是該城市在某個月份的溫度。 題目的原文敘述 測試範例 Example 1: Input: +--------------+-
題目敘述 題目會給定兩個pandas DataFrame作為輸入,要求我們將兩張資料表,依照原有的順序串接在一起。 題目的原文敘述 測試範例 Example 1: Input: df1 +------------+---------+-----+ | student_id | name
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將所有在欄位quantity的缺失值填補為0。 題目的原文敘述 測試範例 Example 1: Input:+-----------------+----------+-------+ | nam
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將欄位grade的資料型別從原本的float變更為int整數型別。 題目的原文敘述 測試範例 Example 1: Input: DataFrame students: +------------
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將所有的column資料欄位名稱重新命名。 id 改名為 student_id first 改名為 first_name last 改名為 last_name age 改名為 age_in_year
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表salary欄位為基準,把每一筆資料的薪水salary欄位值更新為原本的兩倍。 題目的原文敘述 測試範例 Example 1: Input: DataFrame employees +--------
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表為基礎,將資料表做樞紐轉換,垂直方向是月份,水平方向是不同的城市,而表格內容是該城市在某個月份的溫度。 題目的原文敘述 測試範例 Example 1: Input: +--------------+-
題目敘述 題目會給定兩個pandas DataFrame作為輸入,要求我們將兩張資料表,依照原有的順序串接在一起。 題目的原文敘述 測試範例 Example 1: Input: df1 +------------+---------+-----+ | student_id | name
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將所有在欄位quantity的缺失值填補為0。 題目的原文敘述 測試範例 Example 1: Input:+-----------------+----------+-------+ | nam
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將欄位grade的資料型別從原本的float變更為int整數型別。 題目的原文敘述 測試範例 Example 1: Input: DataFrame students: +------------
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們在原有的資料表上,將所有的column資料欄位名稱重新命名。 id 改名為 student_id first 改名為 first_name last 改名為 last_name age 改名為 age_in_year
題目敘述 題目會給定一個pandas DataFrame作為輸入,要求我們以原有的資料表salary欄位為基準,把每一筆資料的薪水salary欄位值更新為原本的兩倍。 題目的原文敘述 測試範例 Example 1: Input: DataFrame employees +--------
你可能也想看
Google News 追蹤
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
Python資料視覺化在數據分析中扮演關鍵角色,透過視覺化捕捉數據模式、趨勢和異常,透過Matplotlib等工具創建專業圖表變相對簡單和高效。
Thumbnail
本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
Thumbnail
pandas是用於資料操縱和分析的Python軟體庫。它建造在 NumPy 基礎上,並為操縱數值表格和時間序列,提供了資料結構和運算操作。 Pandas 的主要資料結構包含 Series 和 DataFrame 物件,由於 Pandas 本身基 Numpy 所以在使用大量資料運算時效能表現也優於原
Thumbnail
本文在介紹如何用Python繪製各點大小不同的散布圖及用箭頭標註特殊點
Thumbnail
這篇文章介紹如何使用Python整理資料成百分比資料以及繪製百分比堆疊直條圖。
Thumbnail
本文介紹瞭如何使用 Python pandas 進行資料分析,包括如何使用 corr() 函數針對數字類型的欄位進行分析,以及如何刪除不需要的欄位和取得想要的小數位數。
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
Python資料視覺化在數據分析中扮演關鍵角色,透過視覺化捕捉數據模式、趨勢和異常,透過Matplotlib等工具創建專業圖表變相對簡單和高效。
Thumbnail
本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
Thumbnail
pandas是用於資料操縱和分析的Python軟體庫。它建造在 NumPy 基礎上,並為操縱數值表格和時間序列,提供了資料結構和運算操作。 Pandas 的主要資料結構包含 Series 和 DataFrame 物件,由於 Pandas 本身基 Numpy 所以在使用大量資料運算時效能表現也優於原
Thumbnail
本文在介紹如何用Python繪製各點大小不同的散布圖及用箭頭標註特殊點
Thumbnail
這篇文章介紹如何使用Python整理資料成百分比資料以及繪製百分比堆疊直條圖。
Thumbnail
本文介紹瞭如何使用 Python pandas 進行資料分析,包括如何使用 corr() 函數針對數字類型的欄位進行分析,以及如何刪除不需要的欄位和取得想要的小數位數。