Sentence Embedding by BERT and Sentence Similarity

閱讀時間約 30 分鐘

This article will introduce how to use BERT to get sentence embedding and use this embedding to fine-tune downstream tasks. I will also talk about Sentence Similarity for sentence clustering or intention matching.

I will only go through a few details of BERT in this article since there are already tons of excellent articles and tutorials on the internet talking about it.

OK, that start it!

raw-image


BERT sentence embedding for downstream task

The concept is to transform the sentence (i.e. sequence of text) into a numerical vector and then come up with a linear layer to do the downstream task (classification or regression)

BERT offers the following 4 down-stream task examples:

raw-image


To use BERT, you need to prepare the input stuffs for BERT.

  1. token id: The index of each text in BERT corpus.
  2. attention mask: Because we will padding every sentence to the same length, it needs attention mask to let self-attention layer know which words are padding words and mask them.
  3. segment id: If your downstream task need input two sentences (e.g. sentence pair classification, question answering), segment id is used to distinguish first and second sentence. If your task only have one sentence as input, you only need to create a constant array with any index.
raw-image


Let us create these input tensors step by step then you will be clear on that.

  1. import package & download tokenizer and model:
import torch
from transformers import BertTokenizer,BertModel

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained("bert-base-uncased")
# models: https://huggingface.co/models?sort=downloads


2. tokenize the sequence

sentence = 'I really enjoyed this movie a lot.'
tokens = tokenizer.tokenize(sentence)
print(tokens)
# ['i', 'really', 'enjoyed', 'this', 'movie', 'a', 'lot', '.']


3. Add [CLS] and [SEP] tokens

tokens = ['[CLS]'] + tokens + ['[SEP]']
tokens
# ['[CLS]', 'i', 'really', 'enjoyed', 'this', 'movie', 'a', 'lot', '.', '[SEP]']


4. Padding the input

T=15

padded_tokens = tokens + ['[PAD]'for_inrange(T-len(tokens))]
print("Padded tokens are \n {} ".format(padded_tokens))

attn_mask = [1iftoken !='[PAD]'else0fortokeninpadded_tokens ]
print("Attention Mask are \n {} ".format(attn_mask))
raw-image


5. Create a list of segment tokens

seg_ids = [0 for _ in range(len(padded_tokens))]


6. Create input tensor for all of this stuff

sent_ids = tokenizer.convert_tokens_to_ids(padded_tokens)
token_ids = torch.tensor(sent_ids).unsqueeze(0)
attn_mask = torch.tensor(attn_mask).unsqueeze(0)
seg_ids = torch.tensor(seg_ids).unsqueeze(0)

print(token_ids)
print(attn_mask)
print(seg_ids)

# tensor([[ 101, 1045, 2428, 5632, 2023, 3185, 1037, 2843, 1012, 102, 0, 0, 0, 0, 0]])
# tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]])
# tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])


7. model inference

So far, we’ve already prepared the input BERT need, we are ready to feed all this stuffs into model then get the sentence embedding.

output = model(token_ids, attention_mask=attn_mask,token_type_ids=seg_ids)
last_hidden_state, pooler_output = output[0], output[1]

print(last_hidden_state.shape) #hidden states of each token
print(pooler_output.shape) #hidden states of [cls] (forward one linear layer and Tanh activation)

Basically, pooler_output is what we want. We only need to add some linear layer to create output layer for our downstream task to fine-tune the neural network. For example:

from transformers import BertTokenizer,BertModel

class BERT_classifier(nn.Module):
def __init__(self, bertmodel, num_label):
super(BERT_classifier, self).__init__()
self.bertmodel = bertmodel
self.classifier = nn.Linear(bertmodel.config.hidden_size, num_label)

def forward(self, wrapped_input):
hidden = self.bertmodel(**wrapped_input)
last_hidden_state, pooler_output = hidden[0], hidden[1]
logits = self.classifier(pooler_output)

return logits

bert = BertModel.from_pretrained("bert-base-uncased")
model = BERT_classifier(bert, 2)


you also can just use the build in model structure in Huggingface, e.g. BertForSequenceClassificationBertForQuestionAnswering

from transformers import BertForSequenceClassification

model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# this has same model structure as above


You might have noticed that it’s very easy to inference with BERT, the main effort is to create the input tensor of BERT.

In the real situation, we don’t need to construct input tensor step by step like in the above described. The tokenizer has already wrapped all this work into a single command.

We can just use the below command to replace the step 2,3,4,5.

wrapped_input = tokenizer(sentence, max_length=15, add_special_tokens=True, truncation=True,
padding='max_length', return_tensors="pt")

wrapped_input
#{'input_ids': tensor([[ 101, 1045, 2428, 5632, 2023, 3185, 1037, 2843, 1012, 102, 0, 0, 0, 0, 0]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]])}


Note: padding=True will padding to the longest setence length, on the other hand, if padding=‘max_length’ then it will padding to the length “max_length”

unpack this dict and feed it into the model then we’ll get the embedding

output = model(**wrapped_input)
last_hidden_state, pooler_output = output[0], output[1]


Exercise

I took IMDb movie review as an example (BERTforSequenceClassification). The goal is to classify whether the movie review is positive or negative.

Basically, it’s just PyTorch training pipeline so I’m not going to talk too much in this article. I put jupyter notebook in this github repo you can refer to it.

The val acc ~92.5% and test set acc = 23084 / 25000(92.336%)

[epoch 1]train on 24000 data......
100%|██████████| 1500/1500 [09:24<00:00, 2.66it/s]
training set: average loss: 0.0168, acc: 21350/24000(88.958%)
validation on 1000 data......
Val set:Average loss:0.0120, acc:928/1000(92.800%)
elapse: 575.06s

[epoch 2]train on 24000 data......
100%|██████████| 1500/1500 [09:15<00:00, 2.70it/s]
training set: average loss: 0.0094, acc: 22685/24000(94.521%)
validation on 1000 data......
Val set:Average loss:0.0126, acc:936/1000(93.600%)
elapse: 566.25s

[epoch 3]train on 24000 data......
100%|██████████| 1500/1500 [09:19<00:00, 2.68it/s]
training set: average loss: 0.0054, acc: 23321/24000(97.171%)
validation on 1000 data......
Val set:Average loss:0.0166, acc:925/1000(92.500%)
elapse: 569.87s

[epoch 4]train on 24000 data......
100%|██████████| 1500/1500 [09:18<00:00, 2.69it/s]
training set: average loss: 0.0032, acc: 23621/24000(98.421%)
validation on 1000 data......
Val set:Average loss:0.0196, acc:925/1000(92.500%)
elapse: 568.86s

[epoch 5]train on 24000 data......
100%|██████████| 1500/1500 [09:21<00:00, 2.67it/s]
training set: average loss: 0.0021, acc: 23743/24000(98.929%)
validation on 1000 data......
Val set:Average loss:0.0180, acc:925/1000(92.500%)
elapse: 572.23s




Sentence Similarity

When you are trying to do sentence/doc clustering or intention matching, you will need to do sentence similarity.

You might think about using BERT embedding we got from the above section and then calculate Euclidean distance or cosine similarity between two sentence embeddings. However, it’s not a good solution.

Reminding that BERT pre-train was trained by MaskedLMNextSentencePrediction, hence the original purpose of BERT is not to create a meaningful embedding of the sentence but for some specific downstream task.

Jacob Devlin’s comment: I’m not sure what these vectors are, since BERT does not generate meaningful sentence vectors. It seems that this is is doing average pooling over the word tokens to get a sentence vector, but we never suggested that this will generate meaningful sentence representations. And even if they are decent representations when fed into a DNN trained for a downstream task, it doesn’t mean that they will be meaningful in terms of cosine distance. (Since cosine distance is a linear space where all dimensions are weighted equally). (https://github.com/google-research/bert/issues/164#issuecomment-441324222)

If you want to use BERT to do sentence similarity, the closest task should be sentence pair classification.

raw-image


input is two sentences that you want to compare with and the target is whether these two sentences have the same meaning or not.

However, this method is not efficient. Imagine that you have 100 sentences and you want to know the similarity of each pair of sentences, then you need to feedforward BERT C(100, 2) = 4950 times.

The straightforward way is to train a meaningful embedding, then the embedding vector will contain the “meaning” of the sentence. You only need to calculate the similarity of the embedding vector to get the sentence similarity.

Siamese Networks might come to your mind. Feedforward two BERT layers separately, then use Contrastive loss or Triplet loss to train the embedding.

This is a good idea and of course, it has been published in paper and developed into a well-used package.

raw-image


You can refer to Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. The core idea is just to use BERT to train Siamese Network.

The authors consider three ways in the pooling strategies,: Using the output of the CLS-token, computing the mean of all output vectors (MEANstrategy), and computing a max-over-time of the output vectors (MAX-strategy), and finally choosing MEAN strategy as the default option.

The most important part is that they developed sentence-transformers and it offers the pretrain model which saves you the biggest effort: data collection and labeling!

raw-image


Exercise

Suppose we are going to develop a chatbot and we need to do intention matching. Let us do a simple experiment.

First, import package and load model.

from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2') # multi-language model
sentences = [
'what is the weather tomorrow',
'will it rain tomorrow',
'Will the weather be hot in the future',
'what time is it',
'could you help me translate this setence',
'play some jazz music'
]

use this model to get the embedding of each sentence:

embedding = model.encode(sentences, convert_to_tensor=False)
embedding.shape#(6, 384)

We can see the six sentences have been transformed into 384d embedding vectors.

Then we calculate cosine similarity pairwise and observe the result.

cosine_scores = util.cos_sim(embedding, embedding)
d = {}
for i, v1 in enumerate(sentences):
for j, v2 in enumerate(sentences):
if i >= j:
continue
d[v1 + ' vs. ' + v2] = cosine_scores[i][j].item()

# sort by score
d_sorted = dict(sorted(d.items(), key=lambda x: x[1], reverse=True))
d_sorted

{'what is the weather tomorrow vs. will it rain tomorrow': 0.8252906203269958,
'what is the weather tomorrow vs. Will the weather be hot in the future': 0.6635355949401855,
'will it rain tomorrow vs. Will the weather be hot in the future': 0.5936063528060913,
'what is the weather tomorrow vs. what time is it': 0.47494661808013916,
'will it rain tomorrow vs. what time is it': 0.4440332055091858,
'Will the weather be hot in the future vs. what time is it': 0.33612486720085144,
'could you help me translate this setence vs. play some jazz music': 0.1588955670595169,
'what is the weather tomorrow vs. play some jazz music': 0.11192889511585236,
'will it rain tomorrow vs. play some jazz music': 0.09996305406093597,
'will it rain tomorrow vs. could you help me translate this setence': 0.09915214776992798,
'what time is it vs. could you help me translate this setence': 0.09021759033203125,
'what is the weather tomorrow vs. could you help me translate this setence': 0.08801298588514328,
'Will the weather be hot in the future vs. could you help me translate this setence': 0.07638849318027496,
'what time is it vs. play some jazz music': 0.054117172956466675,
'Will the weather be hot in the future vs. play some jazz music': 0.027871515601873398}

The score seems to be quite reasonable!


Reference




1會員
3內容數
hello
留言0
查看全部
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
Thumbnail
本專欄將提供給您最新的市場資訊、產業研究、交易心法、優質公司介紹,以上內容並非個股分析,還請各位依據自身狀況作出交易決策。歡迎訂閱支持我,獲得相關內容,也祝您的投資之路順遂! 每年 $990 訂閱方案👉 https://reurl.cc/VNYVxZ 每月 $99 訂閱方案👉https://re
Thumbnail
上回我們講到 Word Embedding 能夠將字詞表示從使用字典索引改成詞向量表示,且這個詞向量能夠包含一定程度上的語義訊息,今天就讓我們探討 Word Embedding 到底是如何訓練成的。
Thumbnail
在英文文法中,句子根據結構可以分為單句(Simple Sentence)、合句(Compound Sentence)、複句(Complex Sentence)和複合句(Compound-Complex Sentence)。下面分別解釋每一種句子類型並提供範例: ### 1. 單句(Simple
Thumbnail
ComfyUI教學第二階段之[LoRA&Embeddings],本篇介紹如何套用lora、調用embeddings,這個階段一共會分成三部影片、三篇文字版。
Thumbnail
要檢查兩段長篇文字,內容是否雷同,長久以來困擾著大家,沒有好的嵌入模型,會耗費大量人力,需要對長篇文檔進行人工閱讀然後人工分類。本文除了展示如何能完美的解決這個痛點以外,也提供一些延伸應用思路,學習CP值很高。期待你能從本文取得許多新的應用思路與應用潛力!
Thumbnail
MOCI短篇故事系列“男子與女智者對話”的最後一篇,對於生命的真相,潛意識、想像力、二元性、分離、相互連結、慈悲、愛、希望...彼此的關係,非常精彩、非常邏輯的靈性對話故事。 請耐心地,反覆地看,會讓我們的生命畫布,開展出不一樣世界。
Thumbnail
Hi,我是茶桁。 过去的8讲,你已熟悉Embedding和Completion接口。Embedding适合用于机器学习中的分类、聚类等传统场景。Completion接口可以用作聊天机器人,也可以用于文案撰写、文本摘要、机器翻译等工作。 然而,很多同学可能认为这与他们的日常工作无关。实际上,我们通
Thumbnail
詞跟詞之間的距離有多近呢? 如果一個詞在相對的空間內都佔有一席之地的話, 試想, 每個詞都是一個獨立的個體, 就如同我們人類一般, 相同興趣的、相同頻率的就容易被歸納在一起,某些詞可能是相近的意思, 因此我們只需要給每個詞標上一個向量值, 並進行統計,而這些詞在這批資料集之中所佔的位置依照距離都能夠
其實跟word2vec, skipgram都沒什麼關係 如果你跟我一樣是先看了transformers或者是至少word embeddings相關的papers才回去設法用pytorch來實作 一開始一定會非常非常困惑 會不知道這個 torch.nn.Embedding在搞什麼鬼 查了官方文件你可能
Thumbnail
完整標題:by 與「以」或「馮」或「憑」或「倗」或「憑以」、「憑依」、「憑由」或「傍以」、「傍依」、「傍沿」、「旁依」、「陪依」、「伴依」、「旁沿」、「邊依」、「邊沿」、「濱沿」、「賓以」、「被」、「被以」、「被由」、「被用」、「備以」、「便以」、「甫於」等的轉換密碼
Thumbnail
2020金馬影展TGHFF 故事大綱 Frank與Sean是一對關係緊張的父子,Sean因為汽車竊盜罪而入獄,出獄後本欲直接前往加州展開新生活,父親Frank卻告訴他,因癌症過世的母親有一個遺願,就是要他們父子倆一起把她的骨灰撒在故鄉愛爾蘭北方的艾蘭湖。 抵達愛爾蘭後,Frank卻發現自己的妻子似乎
Thumbnail
本專欄將提供給您最新的市場資訊、產業研究、交易心法、優質公司介紹,以上內容並非個股分析,還請各位依據自身狀況作出交易決策。歡迎訂閱支持我,獲得相關內容,也祝您的投資之路順遂! 每年 $990 訂閱方案👉 https://reurl.cc/VNYVxZ 每月 $99 訂閱方案👉https://re
Thumbnail
上回我們講到 Word Embedding 能夠將字詞表示從使用字典索引改成詞向量表示,且這個詞向量能夠包含一定程度上的語義訊息,今天就讓我們探討 Word Embedding 到底是如何訓練成的。
Thumbnail
在英文文法中,句子根據結構可以分為單句(Simple Sentence)、合句(Compound Sentence)、複句(Complex Sentence)和複合句(Compound-Complex Sentence)。下面分別解釋每一種句子類型並提供範例: ### 1. 單句(Simple
Thumbnail
ComfyUI教學第二階段之[LoRA&Embeddings],本篇介紹如何套用lora、調用embeddings,這個階段一共會分成三部影片、三篇文字版。
Thumbnail
要檢查兩段長篇文字,內容是否雷同,長久以來困擾著大家,沒有好的嵌入模型,會耗費大量人力,需要對長篇文檔進行人工閱讀然後人工分類。本文除了展示如何能完美的解決這個痛點以外,也提供一些延伸應用思路,學習CP值很高。期待你能從本文取得許多新的應用思路與應用潛力!
Thumbnail
MOCI短篇故事系列“男子與女智者對話”的最後一篇,對於生命的真相,潛意識、想像力、二元性、分離、相互連結、慈悲、愛、希望...彼此的關係,非常精彩、非常邏輯的靈性對話故事。 請耐心地,反覆地看,會讓我們的生命畫布,開展出不一樣世界。
Thumbnail
Hi,我是茶桁。 过去的8讲,你已熟悉Embedding和Completion接口。Embedding适合用于机器学习中的分类、聚类等传统场景。Completion接口可以用作聊天机器人,也可以用于文案撰写、文本摘要、机器翻译等工作。 然而,很多同学可能认为这与他们的日常工作无关。实际上,我们通
Thumbnail
詞跟詞之間的距離有多近呢? 如果一個詞在相對的空間內都佔有一席之地的話, 試想, 每個詞都是一個獨立的個體, 就如同我們人類一般, 相同興趣的、相同頻率的就容易被歸納在一起,某些詞可能是相近的意思, 因此我們只需要給每個詞標上一個向量值, 並進行統計,而這些詞在這批資料集之中所佔的位置依照距離都能夠
其實跟word2vec, skipgram都沒什麼關係 如果你跟我一樣是先看了transformers或者是至少word embeddings相關的papers才回去設法用pytorch來實作 一開始一定會非常非常困惑 會不知道這個 torch.nn.Embedding在搞什麼鬼 查了官方文件你可能
Thumbnail
完整標題:by 與「以」或「馮」或「憑」或「倗」或「憑以」、「憑依」、「憑由」或「傍以」、「傍依」、「傍沿」、「旁依」、「陪依」、「伴依」、「旁沿」、「邊依」、「邊沿」、「濱沿」、「賓以」、「被」、「被以」、「被由」、「被用」、「備以」、「便以」、「甫於」等的轉換密碼
Thumbnail
2020金馬影展TGHFF 故事大綱 Frank與Sean是一對關係緊張的父子,Sean因為汽車竊盜罪而入獄,出獄後本欲直接前往加州展開新生活,父親Frank卻告訴他,因癌症過世的母親有一個遺願,就是要他們父子倆一起把她的骨灰撒在故鄉愛爾蘭北方的艾蘭湖。 抵達愛爾蘭後,Frank卻發現自己的妻子似乎