AI說書 - 從0開始 - 49

AI說書 - 從0開始 - 49

更新於 發佈於 閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


再度回到 Transformer 架構中的 Encoder 部分,如下圖所示:

raw-image


我現在手上有的素材如下:



現在我們準備把既有的素材合在一起,目前我手上有每個字的 Input Embedding 與 Positional Encoding,每個字都有這兩項素材,且它們都是維度為 512 的向量,依據原始 Google 發表的 Transformer 論文,合起來的步驟是這樣的:

  1. 每個字的 Input Embedding 向量乘上 (512開根號 )
  2. 上述結果拿來跟每個字的 Positional Encoding 相加
  3. 注意因為兩者維度都是 512 ,所以向量可以相加,此外每個字都要重複上述步驟


至於為什麼要乘上 (512開根號) 呢,這和 Embedding 在訓練的時候,內部神經網路的初始權重配置有關係,為了避免訓練不穩定,通常會給每個權重的變異數加以限制,也因為這樣的配置,在神經網路訓練好之後,要再把它調整回來,那根號的原因和變異數有平方的概念相抵銷,整體的數學邏輯可以參照:

https://stats.stackexchange.com/questions/534618/why-are-the-embeddings-of-tokens-multiplied-by-sqrt-d-note-not-divided-by-sq

avatar-img
Learn AI 不 BI
219會員
568內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言
avatar-img
留言分享你的想法!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 47 闡述完 Positional Encoding 的作法了,按照句子:「The black cat sat on the c
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 41中,提及 Transformer 的 Encoder 架構如下圖所示: 此外我已經在AI說書 - 從0開始 - 42中,
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 45,我們介紹了 Google 於2017 年提出的 Transformer 架構的 Positional Encoding (PE)
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Prompt Engineering 作為一門新興學科,與已建立的軟體工程領域有著驚人的相似之處,這種並
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 達到頂峰 - 專家級別,我們將 Prompt 視為複雜的程式設計,在這裡,我們利用先進的設計模式,優化人
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 專家級 Prompt Engineering 標誌著人工智慧通訊方式的轉變,在這個階段中,提示不只是問題
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 47 闡述完 Positional Encoding 的作法了,按照句子:「The black cat sat on the c
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 41中,提及 Transformer 的 Encoder 架構如下圖所示: 此外我已經在AI說書 - 從0開始 - 42中,
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 45,我們介紹了 Google 於2017 年提出的 Transformer 架構的 Positional Encoding (PE)
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Prompt Engineering 作為一門新興學科,與已建立的軟體工程領域有著驚人的相似之處,這種並
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 達到頂峰 - 專家級別,我們將 Prompt 視為複雜的程式設計,在這裡,我們利用先進的設計模式,優化人
我們人類和ChatGPT的對話技巧也是需要學習的,有鑑於此,我想要一天分享一點「和ChatGPT對話的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 專家級 Prompt Engineering 標誌著人工智慧通訊方式的轉變,在這個階段中,提示不只是問題