AI說書 - 從0開始 - 220 | GPT 4 & RAG 文章檢索器

更新於 2024/10/21閱讀時間約 3 分鐘

我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。


延續 AI說書 - 從0開始 - 218 | OpenAI GPT 4 & RAG 安裝完相關依賴,今天來撰寫一個函數,此函數能執行文章內容檢索:

def fetch_and_summarize(user_query):
urls = select_urls_based_on_query(user_query)
summarizer = pipeline("summarization", model = "sshleifer/distilbart-cnn-12-6")
summaries = []

for url in urls:
page = requests.get(url)
soup = BeautifulSoup(page.content, 'html.parser')
article = soup.find('article')
if article:
article_text = article.get_text()
else:
paragraphs = soup.find_all('p')
article_text = ' '.join([para.get_text() for para in paragraphs])

if len(article_text) > 1024:
article_text = article_text[:1024]

summary = summarizer(article_text, max_length = 130, min_length = 30, do_sample = False)[0]['summary_text']
summaries.append(summary)
return summaries




avatar-img
168會員
439內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 218 | OpenAI GPT 4 & RAG 安裝完相關依賴,今天來撰寫一個函數,此函數透過使用使用者請求中的關鍵字來選擇 URL
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將建立一個實作 Retrieval Augmented Generation (RAG) 的入門程式,文檔檢索並不是什麼新鮮事,自從幾十年前資料庫查詢出現以來,知識
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 注意 AI說書 - 從0開始 - 215 | OpenAI GPT 4 API 的格式,當中有兩種角色,分別為: System Role User Role 而各
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在 AI說書 - 從0開始 - 215 | OpenAI GPT 4 API 中給出了一段程式做推論,當中不乏很多超參數,我們可以試著調配看看: model
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將開始使用 ChatGPT Plus 和 GPT-4 作為助手,您將看到尖端開發人員如何利用 GPT-4 作為助手來縮短上市時間。 這次我想請 GPT 4 幫
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將開始使用 ChatGPT Plus 和 GPT-4 作為助手,您將看到尖端開發人員如何利用 GPT-4 作為助手來縮短上市時間。 比方說問 ChatGPT
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 218 | OpenAI GPT 4 & RAG 安裝完相關依賴,今天來撰寫一個函數,此函數透過使用使用者請求中的關鍵字來選擇 URL
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將建立一個實作 Retrieval Augmented Generation (RAG) 的入門程式,文檔檢索並不是什麼新鮮事,自從幾十年前資料庫查詢出現以來,知識
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 注意 AI說書 - 從0開始 - 215 | OpenAI GPT 4 API 的格式,當中有兩種角色,分別為: System Role User Role 而各
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在 AI說書 - 從0開始 - 215 | OpenAI GPT 4 API 中給出了一段程式做推論,當中不乏很多超參數,我們可以試著調配看看: model
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將開始使用 ChatGPT Plus 和 GPT-4 作為助手,您將看到尖端開發人員如何利用 GPT-4 作為助手來縮短上市時間。 這次我想請 GPT 4 幫
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們將開始使用 ChatGPT Plus 和 GPT-4 作為助手,您將看到尖端開發人員如何利用 GPT-4 作為助手來縮短上市時間。 比方說問 ChatGPT
你可能也想看
Google News 追蹤
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續xxxx,ChatGPT 產生的程式,我們將它匯入 Colab 執行看看 ( Colab 使用教學見 使用Meta釋出的模型,實作Chat GPT - Part 0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 xxx ,ChatGPT 除了產生程式周邊的文字描述,事實上它還會回覆程式語法的指令 : !pip install scikit-learn import nu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要操作ChatGPT,我們可以參考OpenAI的範例: https://platform.openai.com/examples/default-sql-trans
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 30中,陳述了AI專案選擇系統的重要性,可以是Hugging Face、Google Cloud AI、ChatGPT/GPT-4
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 28中闡述了一些AI專業者的未來發展方向,現在我們更細分: 人工智慧專家在人工智慧某一領域擁有專業知識或技能,包含微調模型、維護和支
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,現在我們繼續做下去。 AI說書 - 從0開始 - 25在步驟7:Plot the confusio
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 23示範了ChatGPT回答的能力,現在我們來看看ChatGPT撰寫程式的能力。 嘗試問以下問題:Write a detailed
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a
Thumbnail
*合作聲明與警語: 本文係由國泰世華銀行邀稿。 證券服務係由國泰世華銀行辦理共同行銷證券經紀開戶業務,定期定額(股)服務由國泰綜合證券提供。   剛出社會的時候,很常在各種 Podcast 或 YouTube 甚至是在朋友間聊天,都會聽到各種市場動態、理財話題,像是:聯準會降息或是近期哪些科
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 目前我們已經有資料集在 AI說書 - 從0開始 - 103 ,必要的清理函數在 AI說書 - 從0開始 - 104 ,現在把它們湊在一起,如下: # load Eng
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續xxxx,ChatGPT 產生的程式,我們將它匯入 Colab 執行看看 ( Colab 使用教學見 使用Meta釋出的模型,實作Chat GPT - Part 0
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 xxx ,ChatGPT 除了產生程式周邊的文字描述,事實上它還會回覆程式語法的指令 : !pip install scikit-learn import nu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 先做個總回顧: Transformer 架構總覽:AI說書 - 從0開始 - 39 Attention 意圖說明:AI說書 - 從0開始 - 40 Transfo
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 想要操作ChatGPT,我們可以參考OpenAI的範例: https://platform.openai.com/examples/default-sql-trans
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 30中,陳述了AI專案選擇系統的重要性,可以是Hugging Face、Google Cloud AI、ChatGPT/GPT-4
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們在AI說書 - 從0開始 - 28中闡述了一些AI專業者的未來發展方向,現在我們更細分: 人工智慧專家在人工智慧某一領域擁有專業知識或技能,包含微調模型、維護和支
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 25示範了ChatGPT程式的能力,現在我們繼續做下去。 AI說書 - 從0開始 - 25在步驟7:Plot the confusio
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 23示範了ChatGPT回答的能力,現在我們來看看ChatGPT撰寫程式的能力。 嘗試問以下問題:Write a detailed
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續AI說書 - 從0開始 - 22解釋Foundation Model與Engines意涵後,我們來試用看看ChatGPT。 嘗試問以下問題:Provide a