付費限定

[OpenCV][Python]實測tesseract OCR的Best模型與Fast模型

更新於 2024/09/26閱讀時間約 1 分鐘

本文將實測,使用同一組圖像,用不同的OCR模型來辨識看成效如何,主要介紹如何從資料夾中,讀取圖片檔中的檔名來比對tesseract OCR的結果是否一致,若結果不同就記錄其錯誤位置及次數,統計最後的誤判率及誤判字的總次數。

圖片檔中的檔名由事先整理出正確結果,比對OCR模型用。


Tesseract OCR模型介紹圖

來自官方資料

來自官方資料


tesseract OCR模型 github網址

圖像中的OCR,字體與我上一篇文章相同,文章連結如下

[OpenCV][Python]OCR分割及增加間隔[雙排文字]


結果圖

目前使用的經驗上,覺得Best模型對較清楚的字體辨識度較高,Fast模型對於不清楚的辨識率反而不錯。若後續還有什麼心得在分享

Best模型

raw-image

Fast模型

raw-image


以行動支持創作者!付費即可解鎖
本篇內容共 338 字、1 則留言,僅發佈於[Python][OpenCV]學習心得筆記你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
128會員
209內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
在Tesseract的討論論壇中看到一篇文章,有人研究tesseract在文字高度在30~33pixl~內辨識率是最佳的。 本文就將來實作看看,拿出之前實驗用的OCR圖檔來跑跑看。 實驗內容 縮放與不縮放的圖片在tesseract OCR結果比較 圖片縮放流程 先讀取圖片中OCR的高度,取
[OpenCV][Python]影像增強對比_自適應直方圖均衡化 在上一篇文章,我們有比較過自適應直方圖均衡化與直方圖均衡化的差異。 本文將主要應用在OCV檢測上,應用這兩種方法將會有那些不一樣的差異。內文中的OCV檢測,主要涵蓋OCR的文字高寬及面積。 測試圖 就利用這看起來雜訊特多的圖。
此文章延續以下這篇文章,實際測試增加或固定間隔的狀況下,是否可以增加辨識率 [OpenCV][Python]OCR分割及增加間隔[雙排文字] 此篇文章程式碼有修正上篇,OCR 特殊符號:會分割錯誤的問題。
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
在文字辨識中,適當的增加一文字彼此間的間隔是有幫助於辨識的,原因在大多數OCR引擎在處理字符時會依賴空白區域來區分不同的字符。如果字符之間的間隔過小,OCR引擎可能會將相鄰的字符誤認為一個單一的字符或難以正確切割字符。增加間隔可以幫助OCR引擎更準確地識別和切割每個字符。 本文說明如何增加OCR間
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
在Tesseract的討論論壇中看到一篇文章,有人研究tesseract在文字高度在30~33pixl~內辨識率是最佳的。 本文就將來實作看看,拿出之前實驗用的OCR圖檔來跑跑看。 實驗內容 縮放與不縮放的圖片在tesseract OCR結果比較 圖片縮放流程 先讀取圖片中OCR的高度,取
[OpenCV][Python]影像增強對比_自適應直方圖均衡化 在上一篇文章,我們有比較過自適應直方圖均衡化與直方圖均衡化的差異。 本文將主要應用在OCV檢測上,應用這兩種方法將會有那些不一樣的差異。內文中的OCV檢測,主要涵蓋OCR的文字高寬及面積。 測試圖 就利用這看起來雜訊特多的圖。
此文章延續以下這篇文章,實際測試增加或固定間隔的狀況下,是否可以增加辨識率 [OpenCV][Python]OCR分割及增加間隔[雙排文字] 此篇文章程式碼有修正上篇,OCR 特殊符號:會分割錯誤的問題。
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
在文字辨識中,適當的增加一文字彼此間的間隔是有幫助於辨識的,原因在大多數OCR引擎在處理字符時會依賴空白區域來區分不同的字符。如果字符之間的間隔過小,OCR引擎可能會將相鄰的字符誤認為一個單一的字符或難以正確切割字符。增加間隔可以幫助OCR引擎更準確地識別和切割每個字符。 本文說明如何增加OCR間
在影像辨識中,若遇到物件與背景難以分辨的狀況下,先做一下色彩分析,知道了色彩強度階層上的像素數,有助於了解後續需要做什麼處理,比較好分割出辨識物。 若想辨識的物件與背景的RGB值過於接近,也比較好說明此狀況,為什麼較難分割出物件。 成果呈現 第一張圖:左邊為原圖,右邊為分析結果的圖,用其他顏
你可能也想看
Google News 追蹤
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
阿揪西放送的老朋友們應該知道,今年我剛結束了一段大齡留學生活。這段時間偶爾有網友私訊詢問學校申請、開銷和準備流程等問題,我也樂於分享各種細節。其中常提到的建議之一就是:開通一個便捷的網銀帳戶。
Thumbnail
在tesseract-ocr辨識應用中,建議的留白邊框為10pixl,若Label列印的太剛好,沒有任何的邊框時,就會辨識不到文字。 本文將帶大家如何讓圖像增加邊框。 結果圖 示意的比較誇張,我讓邊框增加100pixl,圖片大小原為211*80。
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
在文字辨識中,適當的增加一文字彼此間的間隔是有幫助於辨識的,原因在大多數OCR引擎在處理字符時會依賴空白區域來區分不同的字符。如果字符之間的間隔過小,OCR引擎可能會將相鄰的字符誤認為一個單一的字符或難以正確切割字符。增加間隔可以幫助OCR引擎更準確地識別和切割每個字符。 本文說明如何增加OCR間
Thumbnail
在數字化時代,PDF文件廣泛使用,但傳統處理方式顯得力不從心。本文推薦pdftopdf.ai等工具,通過OCR識別,將圖片中的文字轉化為可編輯、可搜索的文本。探討PDF文檔分析的AI工具,功能和價格。描述其用途以解決掃描件中文字無法直接搜索的困擾,提高工作效率。
Thumbnail
微調(Fine tune)是深度學習中遷移學習的一種方法,其中預訓練模型的權重會在新數據上進行訓練。 本文主要介紹如何使用新的訓練圖檔在tesseract 辨識模型進行Fine tune 有關於安裝的部分可以參考友人的其他文章 Tesseract OCR - 繁體中文【安裝篇】 將所有資料
Thumbnail
學習如何將掃描的PDF轉換為可搜索文本,並高效管理和查找文件。探索先進的OCR技術如何提升文檔處理效率。
Thumbnail
在本文中,我們將瞭解如何將掃描的PDF轉換為可搜索文本,並高效管理和查找文件。探索先進的OCR技術如何提升文檔處理效率。
Thumbnail
Google Tesseract Config說明,程式範例實際修改示範 前言 Tesseract 的 config 檔案用於指定 OCR 引擎的設定和參數。這些參數可以影響文本識別的結果 本文將彙整常用參數調整,並呈現不同參數出現不同的辨識結果 官網Tesseract OCR參數說明連結
Thumbnail
使用Google Tesseract應用,擷取圖像的OCR並將讀取到的字元標註在原圖上 光學字元辨識功能 (Optical character recognition,光學字符辨識) 可以將影像中特徵範圍內的文本轉換為數字形式的文本。使用前必須安装Google Tesseract並更新
Thumbnail
徵的就是你 🫵 超ㄅㄧㄤˋ 獎品搭配超瞎趴的四大主題,等你踹共啦!還有機會獲得經典的「偉士牌樂高」喔!馬上來參加本次的活動吧!
Thumbnail
阿揪西放送的老朋友們應該知道,今年我剛結束了一段大齡留學生活。這段時間偶爾有網友私訊詢問學校申請、開銷和準備流程等問題,我也樂於分享各種細節。其中常提到的建議之一就是:開通一個便捷的網銀帳戶。
Thumbnail
在tesseract-ocr辨識應用中,建議的留白邊框為10pixl,若Label列印的太剛好,沒有任何的邊框時,就會辨識不到文字。 本文將帶大家如何讓圖像增加邊框。 結果圖 示意的比較誇張,我讓邊框增加100pixl,圖片大小原為211*80。
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
在文字辨識中,適當的增加一文字彼此間的間隔是有幫助於辨識的,原因在大多數OCR引擎在處理字符時會依賴空白區域來區分不同的字符。如果字符之間的間隔過小,OCR引擎可能會將相鄰的字符誤認為一個單一的字符或難以正確切割字符。增加間隔可以幫助OCR引擎更準確地識別和切割每個字符。 本文說明如何增加OCR間
Thumbnail
在數字化時代,PDF文件廣泛使用,但傳統處理方式顯得力不從心。本文推薦pdftopdf.ai等工具,通過OCR識別,將圖片中的文字轉化為可編輯、可搜索的文本。探討PDF文檔分析的AI工具,功能和價格。描述其用途以解決掃描件中文字無法直接搜索的困擾,提高工作效率。
Thumbnail
微調(Fine tune)是深度學習中遷移學習的一種方法,其中預訓練模型的權重會在新數據上進行訓練。 本文主要介紹如何使用新的訓練圖檔在tesseract 辨識模型進行Fine tune 有關於安裝的部分可以參考友人的其他文章 Tesseract OCR - 繁體中文【安裝篇】 將所有資料
Thumbnail
學習如何將掃描的PDF轉換為可搜索文本,並高效管理和查找文件。探索先進的OCR技術如何提升文檔處理效率。
Thumbnail
在本文中,我們將瞭解如何將掃描的PDF轉換為可搜索文本,並高效管理和查找文件。探索先進的OCR技術如何提升文檔處理效率。
Thumbnail
Google Tesseract Config說明,程式範例實際修改示範 前言 Tesseract 的 config 檔案用於指定 OCR 引擎的設定和參數。這些參數可以影響文本識別的結果 本文將彙整常用參數調整,並呈現不同參數出現不同的辨識結果 官網Tesseract OCR參數說明連結
Thumbnail
使用Google Tesseract應用,擷取圖像的OCR並將讀取到的字元標註在原圖上 光學字元辨識功能 (Optical character recognition,光學字符辨識) 可以將影像中特徵範圍內的文本轉換為數字形式的文本。使用前必須安装Google Tesseract並更新