進階補充 - LLM 的訓練資料來源是什麼

進階補充 - LLM 的訓練資料來源是什麼

更新於 發佈於 閱讀時間約 3 分鐘

大型語言模型(LLM)的訓練資料來源非常多樣化,主要包括以下幾個方面:

主要資料來源

  1. 網路內容
    • LLM通常使用來自互聯網的公開資料,包括網站、文章、部落格和社交媒體的內容。這些資料幫助模型學習當代語言的使用方式和流行語言13。
  2. 書籍與文獻
    • 訓練數據集還包括各類書籍和學術文獻,這些資料提供了豐富的語言結構和知識背景,幫助模型理解更複雜的語言模式34。
  3. 開放數據集
    • 一些專門的數據集,如Common Crawl、Wikipedia、ArXiv等,也被廣泛用於訓練LLM。這些數據集通常經過清理和篩選,以確保其質量和相關性23。
  4. 社群互動
    • 用戶在社交媒體平台上發表的公開評論和帖子也可能成為訓練資料的一部分,這使得模型能夠捕捉到最新的語言趨勢和文化現象12。
  5. 專業領域資料
    • 對於特定任務(如程式碼生成),模型會使用專業領域的資料,如GitHub上的程式碼庫。這樣可以提高模型在特定應用場景中的效能23。

資料質量的重要性

訓練LLM不僅需要大量資料,還需要高品質的資料。質量較高的資料能夠使模型生成更準確、更具上下文意義的文本。相反,低質量或不相關的資料可能會導致模型產生不準確或偏頗的結果。

資料清洗(Data Cleaning)是指在數據分析或機器學習過程中,對原始數據進行處理,以識別並修正不完整、不準確或不一致的數據。這一過程對於確保分析結果的準確性至關重要。

資料清洗的目的

  • 提高數據質量:確保數據的準確性和一致性,以便後續分析能夠基於高品質的資料進行。
  • 減少模型錯誤:高質量的數據能降低模型對噪聲的敏感性,從而減少錯誤率。
  • 提升決策效果:清理後的數據能為決策提供更可靠的依據。

一般做法

資料清洗通常包括以下幾個步驟:

  1. 缺失值處理
    • 填充:使用均值、中位數或其他常數值替代缺失值。
    • 刪除:若缺失值占比小,則可直接刪除含有缺失值的樣本。
    • 插值:根據已有資料進行估算,如線性插值。
  2. 重複值處理
    • 檢查並刪除重複記錄,保留唯一的條目。
  3. 異常值檢測
    • 使用統計方法(如標準差、四分位數範圍)或機器學習算法來識別和處理異常值。
  4. 資料轉換
    • 將資料轉換為統一格式,包括標準化、歸一化和類別資料編碼(如 one-hot 編碼)。
  5. 一致性檢查
    • 檢查數據的一致性,確保各變數之間邏輯上不矛盾。
  6. 特徵選擇
    • 從原始特徵中選擇對分析或建模最具意義的特徵,以提高模型效能。

總結

大型語言模型的訓練依賴於多元化且高品質的資料來源,這些來源共同構成了模型學習人類語言的基礎。隨著技術進步和數據收集方法的改進,未來LLM將能夠更好地理解和生成自然語言。

avatar-img
AI 從零開始 - M.K.白話解說帶你走進智能新世代
3會員
18內容數
用最淺顯易懂的方式帶你一步一步認識人工智能的世界。無論你是對 AI 完全陌生的初學者,還是希望深化了解的科技愛好者,M.K. 將以輕鬆的白話方式,為你拆解複雜概念,分享最新的 AI 趨勢與應用,讓你從零開始,逐步邁入智能新時代。跟隨我們的步伐,AI 不再遙遠,你也能自主學習,掌握未來!
留言
avatar-img
留言分享你的想法!
TensorFlow是由 Google 開發的一個強大開源機器學習框架,它賦予電腦像人類一樣學習和思考的能力。本文介紹了 TensorFlow 的核心功能、概念及其在圖像識別、自然語言處理等領域的應用,並提供學習資源與社群資訊。無論是初學者還是專業開發者,都能充分發揮 AI 的潛力。
AI邊緣運算將AI能力從雲端帶到身邊裝置,實現更快速、安全、高效的應用,例如智慧城市、農業、零售等。雖然硬體限制、功耗和安全仍是挑戰,但有許多的科技公司正積極開發解決方案,例如低功耗處理器和開源AI推論引擎,加速AI邊緣運算的普及化,開啟智慧生活新篇章。
AI 社群中的知名平臺,專注於自然語言處理 (NLP) 模型,特別是 Transformer。它提供開源資源、豐富的模型庫和友善的開發者體驗,讓研究者和開發者能輕易地取得和使用 AI 模型。活躍的社群促進了知識分享與合作,使 Hugging Face 成為 AI 開發者的重要工具。
TensorFlow是由 Google 開發的一個強大開源機器學習框架,它賦予電腦像人類一樣學習和思考的能力。本文介紹了 TensorFlow 的核心功能、概念及其在圖像識別、自然語言處理等領域的應用,並提供學習資源與社群資訊。無論是初學者還是專業開發者,都能充分發揮 AI 的潛力。
AI邊緣運算將AI能力從雲端帶到身邊裝置,實現更快速、安全、高效的應用,例如智慧城市、農業、零售等。雖然硬體限制、功耗和安全仍是挑戰,但有許多的科技公司正積極開發解決方案,例如低功耗處理器和開源AI推論引擎,加速AI邊緣運算的普及化,開啟智慧生活新篇章。
AI 社群中的知名平臺,專注於自然語言處理 (NLP) 模型,特別是 Transformer。它提供開源資源、豐富的模型庫和友善的開發者體驗,讓研究者和開發者能輕易地取得和使用 AI 模型。活躍的社群促進了知識分享與合作,使 Hugging Face 成為 AI 開發者的重要工具。