從1~10的正整數當中,任取n個數,求總和為偶數的可能|排列組合

更新 發佈閱讀 1 分鐘

前兩天一位認真的高三學生詢問了本咚一道問題。

一開始本咚用最笨的方法(列舉)來計算,被學生反問說:「到時候學測我又不可能有這麼多時間可以列」

本咚覺得很有道理,於是和同事們繼續研究思考。

後來還真的發現神速級解法!(感謝威猛同事C)

這邊分享給各位~

從1~10的正整數當中,任取n個數總和為偶數,其所有取法數量稱為Kn

例如取1個數字,一定得是從5個偶數取其1,故取法=5種,即K1=5

試求:
(1)K6之值為多少(可以用C列舉即可,不用加總)

(2)K1+K2+...+K10之值為多少

留言
avatar-img
咚咚的無話不聊小教室
97會員
164內容數
跟大家分享我的想法以及我的所見所聞 很多事情沒有對錯 多想想 多思考
2025/04/26
又到了排列組合的季節呢
Thumbnail
2025/04/26
又到了排列組合的季節呢
Thumbnail
2024/10/30
首先,我們來回顧一下題目:從1~10的正整數當中,任取n個數總和為偶數,其所有取法數量稱為Kn。 例如取1個數字,一定得是從5個偶數取其1,故取法=5種,即K1=5 試求: (1)K6之值為多少(可以用C列舉即可,不用加總) (2)K1+K2+...+K10之值為多少 需要用到的公式
Thumbnail
2024/10/30
首先,我們來回顧一下題目:從1~10的正整數當中,任取n個數總和為偶數,其所有取法數量稱為Kn。 例如取1個數字,一定得是從5個偶數取其1,故取法=5種,即K1=5 試求: (1)K6之值為多少(可以用C列舉即可,不用加總) (2)K1+K2+...+K10之值為多少 需要用到的公式
Thumbnail
2024/05/10
這篇文章介紹了排列和組閤中的錯位排列和排容原理,並提供了一種相對樸實的解題方法。透過例子詳細解釋了選擇情況下的數學原理,讓讀者能夠理解並吸收。文章通過課堂上難以推敲的題目,提出了一個相對簡單的方式來解題。 圖片選自@pngtree
Thumbnail
2024/05/10
這篇文章介紹了排列和組閤中的錯位排列和排容原理,並提供了一種相對樸實的解題方法。透過例子詳細解釋了選擇情況下的數學原理,讓讀者能夠理解並吸收。文章通過課堂上難以推敲的題目,提出了一個相對簡單的方式來解題。 圖片選自@pngtree
Thumbnail
看更多
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
市場經驗拉長之後,很多投資人都會遇到同一個問題:不是方向看錯,而是部位太集中個股,常常跟大趨勢脫節。 早年的台股環境,中小股非常吃香,反而權值股不動,但QE量化寬鬆後,特別是疫情之後,後疫情時代,鈔票大量在股市走動,這些大資金只能往權值股走,因此早年小P的策略偏向中小型個股,但近年AI興起,高技術
Thumbnail
市場經驗拉長之後,很多投資人都會遇到同一個問題:不是方向看錯,而是部位太集中個股,常常跟大趨勢脫節。 早年的台股環境,中小股非常吃香,反而權值股不動,但QE量化寬鬆後,特別是疫情之後,後疫情時代,鈔票大量在股市走動,這些大資金只能往權值股走,因此早年小P的策略偏向中小型個股,但近年AI興起,高技術
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
高中數學主題練習—n位數問題
Thumbnail
高中數學主題練習—n位數問題
Thumbnail
高中數學主題練習—等差數列求遞迴式
Thumbnail
高中數學主題練習—等差數列求遞迴式
Thumbnail
高中數學主題練習—等比數列求遞迴式
Thumbnail
高中數學主題練習—等比數列求遞迴式
Thumbnail
首先,我們來回顧一下題目:從1~10的正整數當中,任取n個數總和為偶數,其所有取法數量稱為Kn。 例如取1個數字,一定得是從5個偶數取其1,故取法=5種,即K1=5 試求: (1)K6之值為多少(可以用C列舉即可,不用加總) (2)K1+K2+...+K10之值為多少 需要用到的公式
Thumbnail
首先,我們來回顧一下題目:從1~10的正整數當中,任取n個數總和為偶數,其所有取法數量稱為Kn。 例如取1個數字,一定得是從5個偶數取其1,故取法=5種,即K1=5 試求: (1)K6之值為多少(可以用C列舉即可,不用加總) (2)K1+K2+...+K10之值為多少 需要用到的公式
Thumbnail
本文分享了一位高三學生詢問的數學問題,探討如何在有限時間內快速計算從1到10的正整數中,選取n個數其和為偶數的取法數量。具體解釋了計算方法,並提供了相應的數據,以幫助學生提高學測準備效率。
Thumbnail
本文分享了一位高三學生詢問的數學問題,探討如何在有限時間內快速計算從1到10的正整數中,選取n個數其和為偶數的取法數量。具體解釋了計算方法,並提供了相應的數據,以幫助學生提高學測準備效率。
Thumbnail
進入選擇敘述語法了。常用的選擇敘述語法,弄懂了就運用自如。
Thumbnail
進入選擇敘述語法了。常用的選擇敘述語法,弄懂了就運用自如。
Thumbnail
本文特別摘取大一做專題的時候,最仿真的 3 個題目來分享:數學、公民、生物。
Thumbnail
本文特別摘取大一做專題的時候,最仿真的 3 個題目來分享:數學、公民、生物。
Thumbnail
今天接續上次的主題,如何改進做題時講不到解法的進步方式。解法問題是大多數同學遇到的困難,而且學測範圍很大,筆者提出兩個解決方案:歸納做法、一題多解。
Thumbnail
今天接續上次的主題,如何改進做題時講不到解法的進步方式。解法問題是大多數同學遇到的困難,而且學測範圍很大,筆者提出兩個解決方案:歸納做法、一題多解。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News