AI系列-2:優化 RAG + LLM 系統:向量空間的建立與維護

更新於 發佈於 閱讀時間約 2 分鐘


在 RAG + LLM 系統中,向量空間扮演著至關重要的角色。它就像一張知識地圖,幫助 LLM 快速定位相關資訊。

向量空間的概念,是將文字、圖像等資料轉換成高維空間中的點。這些點之間的距離,代表了它們在語義上的相似程度。當我們提出一個問題時,RAG 系統會將其轉換成向量,並在向量空間中搜索最接近的點,從而找到相關的資訊。

數據分析:

  • 研究表明,使用高品質的向量嵌入模型,可以將 RAG 系統的檢索準確度提高 20% 以上。
  • 向量索引的效率,直接影響了 RAG 系統的響應速度。
  • 例如,FAISS 向量索引,可以在毫秒級別內,搜索數百萬個向量。
  • 在今天的嘗試中,我們發現,使用 all-mpnet-base-v2 模型,可以有效地將文本轉換成具有語義資訊的向量。

然而,建立一個高品質的向量空間,並非易事。它需要以下幾個關鍵要素:

  • 大量的資料:
    • 向量空間的密集程度,直接影響了 RAG 系統的檢索效果。
    • 資料量越大,向量空間的覆蓋範圍越廣,LLM 找到相關資訊的機率也越高。
    • 例如,Google 的搜尋引擎,擁有數千億個網頁,可以提供極其密集的向量空間。
  • 專業的技術:
    • 將資料轉換成向量,需要使用專業的嵌入模型。
    • 建立和維護向量索引,也需要專業的技術。
    • 例如,Facebook 的 Sentence Transformers 模型,是一種常用的向量嵌入模型。
    • 在今天的嘗試中,我們使用了 faiss-cpu 函式庫,建立了一個基於 L2 距離的平面索引。
  • 持續的維護:
    • 隨著時間的推移,資料庫中的資訊會不斷更新。
    • 為了保持向量空間的準確性,我們需要定期更新向量索引。
    • 例如,金融領域的 RAG 系統,需要每天更新市場數據和新聞資訊。

在我們的實作過程中,我們發現,即使是少量的資料,也能夠建立一個有效的向量空間。然而,當我們嘗試使用 Facebook 的 RAG 模型時,卻遇到了困難。這讓我們意識到,不同的 RAG 模型,可能對向量空間的建立和使用方式,有不同的要求。

案例分析:

  • 電子商務公司,可以使用 RAG + LLM 系統,建立產品推薦系統。
  • 透過建立產品描述和使用者評論的向量空間,系統可以快速找到與使用者興趣相似的產品。
  • 在今天的嘗試中,我們發現,使用 sentence-transformers 模型,可以有效地將產品描述和使用者評論轉換成向量。

技術細節:

  • 嵌入模型(Embedding Model):
    • 將文字、圖像等資料轉換成向量的模型。
    • 例如,Word2Vec、GloVe、BERT 和 Sentence Transformers。
  • 向量索引(Vector Index):
    • 用於快速搜索相似向量的資料結構。
    • 例如,IVF(倒排檔案索引)、HNSW(分層可導航小世界)和 PQ(乘積量化)。
  • 距離度量(Distance Metric):
    • 用於計算向量之間距離的函數。
    • 例如,歐幾里得距離、餘弦相似度和點積。

 

留言
avatar-img
留言分享你的想法!
avatar-img
管仲的沙龍
9會員
26內容數
養貓,音樂,經絡與預防醫學,企業經營管理,大國博弈,區塊鏈
管仲的沙龍的其他內容
2025/03/07
本文探討2025年AI代理技術的突破性發展,尤其以Monica.im公司發布的Manus為例,分析其對產業及資本主義體系可能造成的深遠影響。文章回顧了自2022年以來AI產業的演進,並剖析關鍵玩家及技術趨勢
Thumbnail
2025/03/07
本文探討2025年AI代理技術的突破性發展,尤其以Monica.im公司發布的Manus為例,分析其對產業及資本主義體系可能造成的深遠影響。文章回顧了自2022年以來AI產業的演進,並剖析關鍵玩家及技術趨勢
Thumbnail
2025/03/06
本文探討美國政府與企業在資訊產業,尤其開源軟體領域的法律責任。分析「免費」背後的商業策略,及其對全球市場和消費者權益的影響,並以藥品、汽車等產業案例對比,強調資訊產業須承擔法律責任,建立健康、公平的數位生態系統。
Thumbnail
2025/03/06
本文探討美國政府與企業在資訊產業,尤其開源軟體領域的法律責任。分析「免費」背後的商業策略,及其對全球市場和消費者權益的影響,並以藥品、汽車等產業案例對比,強調資訊產業須承擔法律責任,建立健康、公平的數位生態系統。
Thumbnail
2025/03/05
本文探討 RAG + LLM 技術的應用與挑戰,分析 Google、IBM、微軟、AWS 等科技巨頭和開源社群的策略,並提供新進業者和企業在導入 RAG + LLM 系統時的建議,包括重視向量空間建立、選擇合適的 RAG 策略、持續學習和實驗以及資料品質等面向。
Thumbnail
2025/03/05
本文探討 RAG + LLM 技術的應用與挑戰,分析 Google、IBM、微軟、AWS 等科技巨頭和開源社群的策略,並提供新進業者和企業在導入 RAG + LLM 系統時的建議,包括重視向量空間建立、選擇合適的 RAG 策略、持續學習和實驗以及資料品質等面向。
Thumbnail
看更多
你可能也想看
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
大家好,我是一名眼科醫師,也是一位孩子的媽 身為眼科醫師的我,我知道視力發展對孩子來說有多關鍵。 每到開學季時,診間便充斥著許多憂心忡忡的家屬。近年來看診中,兒童提早近視、眼睛疲勞的案例明顯增加,除了3C使用過度,最常被忽略的,就是照明品質。 然而作為一位媽媽,孩子能在安全、舒適的環境
Thumbnail
我的「媽」呀! 母親節即將到來,vocus 邀請你寫下屬於你的「媽」故事——不管是紀錄爆笑的日常,或是一直想對她表達的感謝,又或者,是你這輩子最想聽她說出的一句話。 也歡迎你曬出合照,分享照片背後的點點滴滴 ♥️ 透過創作,將這份情感表達出來吧!🥹
Thumbnail
我的「媽」呀! 母親節即將到來,vocus 邀請你寫下屬於你的「媽」故事——不管是紀錄爆笑的日常,或是一直想對她表達的感謝,又或者,是你這輩子最想聽她說出的一句話。 也歡迎你曬出合照,分享照片背後的點點滴滴 ♥️ 透過創作,將這份情感表達出來吧!🥹
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
本文介紹了檢索增強生成(RAG)技術的概念、運作原理、應用場景以及相關資源。RAG 技術結合檢索和生成的優勢,提升了生成內容的準確性和相關性,同時能有效保護隱私數據。對於希望應用 GPT 技術但擔心數據外洩的企業來說,RAG 是一個理想的解決方案。
Thumbnail
本文介紹了檢索增強生成(RAG)技術的概念、運作原理、應用場景以及相關資源。RAG 技術結合檢索和生成的優勢,提升了生成內容的準確性和相關性,同時能有效保護隱私數據。對於希望應用 GPT 技術但擔心數據外洩的企業來說,RAG 是一個理想的解決方案。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 5中說當Context長度是d,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 5中說當Context長度是d,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News