付費限定

【Day 8】Numpy基礎教學 - ndarray、屬性

更新於 發佈於 閱讀時間約 5 分鐘
昨天我們介紹了4個在金融數據分析上相當重要的模組,而今天我們就先從其中我們介紹的「Numpy」開始介紹,從基礎的教學開始吧!!(程式碼在文章下方)

Numpy陣列

Numpy的重點就是在操作「陣列」,其所有功能都是圍繞在同質且多重維度的「ndarray」上
ndarray簡單說就是一個快速且可以節省空間的多維度陣列,並提供向量運算以及複雜的功能,其關鍵屬性是維度(ndim)、形狀(shape)和數值類型(dtype),一般我們稱一維陣列為vector,二維陣列為matrix,那我們就來實際操作練習吧!!
我們先建立了2個3 X 1的陣列,並且可以看到陣列是可以進行計算的,我們嘗試將兩個陣列相加得出了答案,也能顯示出陣列的緯度、形狀、類型,在此我們建立的陣列維1維陣列,形狀為3X1(程式中,後面為空白代表1),類型為整數(int)

※補充 : 什麼是一維陣列?什麼是二維陣列?

我們用一張圖來看,簡單來說,只有單一個row多個column的組成的就是屬於「一維陣列」,就像是1D的圖形一樣就是一條線,而有多個row跟多個column所組成的我們稱為「二維陣列」,就像2D的圖形一樣是一個面

函式建立ndarray

我們除了可以自行建立陣列外,也可以透過函式來建立

以行動支持創作者!付費即可解鎖
本篇內容共 2120 字、0 則留言,僅發佈於30天速成:python從入門到股市分析你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
173會員
59內容數
我出生於財務金融與資訊背景,滿20歲便開始踏入股市。從當初對股市一無所知的菜鳥,到現在成為一名專注於AI股市研究的分析師,這是我的成長歷程。   我崇尚彼得·林區所強調的理念,認為在生活和工作中觀察,從周遭環境中挑選出適合投資的股票,並搭配近期快速崛起的程式交易、大數據分析等AI技術,立志打造輕鬆又便利的投資之路。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
今天來到第7天了,我們終於擺脫基礎教學,準備要進入數據分析的領域了,今天就是要來先聊聊數據分析中我們會用到最重要的四個package,想要學好數據分析這四個模組就一定需要熟悉
在基礎教學完成後,接下來我們就要來學習檔案處理,不論我們今天要分析哪些數據,都需要將數據存取下來並且利用python去讀取出來才能分析,所以這步驟是我們爬蟲的第一步,必須要好好學習唷!!
今天來到Day5了,也來到基礎教學的最後一部分,今天要講解的就是函式(function),有分成內建函數,以及自訂函數,再來是import模組,也就是導入py檔,除了可以導入自行撰寫的py檔,網路上也有許多大神分享相當方便使用的py檔,最後再講解一下如何進行異常處理,也就是Debug的部分
進入第4天教學,今天繼續學習基礎的教學,是跟容器型態(list、tuple、dict)、迴圈(while、for)相關的教學,迴圈是今天的重點,記得好好學習唷!!
進入我們python教學的第3天,正式要進入程式的教學了,首先當然要先從基礎的語法開始教起,我們必須基礎打穩,這樣往後在學進階程式的時候就能更得心應手,所以別略過基礎教學唷!!(程式碼位於文章下方)
在開始撰寫程式前,我們必須先熟悉我們所使用的環境究竟有哪些常用功能,這樣往後在撰寫程式時較容易上手,廢話不多說,我們開始介紹吧!!
今天來到第7天了,我們終於擺脫基礎教學,準備要進入數據分析的領域了,今天就是要來先聊聊數據分析中我們會用到最重要的四個package,想要學好數據分析這四個模組就一定需要熟悉
在基礎教學完成後,接下來我們就要來學習檔案處理,不論我們今天要分析哪些數據,都需要將數據存取下來並且利用python去讀取出來才能分析,所以這步驟是我們爬蟲的第一步,必須要好好學習唷!!
今天來到Day5了,也來到基礎教學的最後一部分,今天要講解的就是函式(function),有分成內建函數,以及自訂函數,再來是import模組,也就是導入py檔,除了可以導入自行撰寫的py檔,網路上也有許多大神分享相當方便使用的py檔,最後再講解一下如何進行異常處理,也就是Debug的部分
進入第4天教學,今天繼續學習基礎的教學,是跟容器型態(list、tuple、dict)、迴圈(while、for)相關的教學,迴圈是今天的重點,記得好好學習唷!!
進入我們python教學的第3天,正式要進入程式的教學了,首先當然要先從基礎的語法開始教起,我們必須基礎打穩,這樣往後在學進階程式的時候就能更得心應手,所以別略過基礎教學唷!!(程式碼位於文章下方)
在開始撰寫程式前,我們必須先熟悉我們所使用的環境究竟有哪些常用功能,這樣往後在撰寫程式時較容易上手,廢話不多說,我們開始介紹吧!!
你可能也想看
Google News 追蹤
Thumbnail
最近國泰世華CUBE App推出的「美股定期定額」功能,讓使用者可以方便地進行跨境理財(但讀者仍需根據自身需求審慎考量),除了享有美股定期定額的新功能,也同時享有台股定期定額的功能,可以一站滿足我們理財的需求! 透過國泰世華CUBE App線上開台股證券戶+複委託戶,流程最快僅需要5分鐘。
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
這篇內容,將會講解什麼是陣列,以及與陣列相關的知識。包括陣列的簡介、陣列的資料限制、陣列的維度、一維陣列、二維陣列。
Thumbnail
Array可以說是各種語言除了基本型別之外,最常用的資料型別與容器之一了。 Array 這種連續格子狀的資料結構,在Python要怎麼表達呢? 建立一個空的陣列 最簡單也最直接的寫法就是 array = [] # Python list [] 就對應到大家熟知的array 陣列型態的資料結
Thumbnail
pandas是用於資料操縱和分析的Python軟體庫。它建造在 NumPy 基礎上,並為操縱數值表格和時間序列,提供了資料結構和運算操作。 Pandas 的主要資料結構包含 Series 和 DataFrame 物件,由於 Pandas 本身基 Numpy 所以在使用大量資料運算時效能表現也優於原
Thumbnail
NumPy 是 Python 語言的一個擴充程式庫,支援高階大規模的多維陣列與矩陣運算的數學函式函式庫。 NumPy 2.0.0 是自 2006 年以來的第一個主要發行版本,此重要版本標誌著 NumPy 發展歷程中的一項重要里程碑,為使用者提供了豐富的增強功能和改進,並為未來的功能開發奠定了基礎。
前言 對標題上的這兩個項目有疑惑,不知道它們返回的資料的不同;查找資料後記錄下來,讓自己以後可以回來翻閱。 正文 numpy.ndarray.flatten:返回攤平的一維array,可參考NumPy: numpy.ndarray.flatten() function,有示意圖 te
np.unique 是 NumPy 庫中的一個函數,用於找出陣列中的相同的數值。這個函數可以單純過濾只取唯一值出來,也可以選擇性地返回這些唯一值在原始陣列中的中的索引和計數。 函式 unique = np.unique(ar, return_index=False, return_inver
NumPy(Numeric Python)是Python中用於科學計算的核心庫之一。它提供了高性能的多維陣列對象(即ndarray)以及用於處理這些陣列的各種函數和工具。 在NumPy中,有幾個常用的指令可以用來創建陣列
Thumbnail
NumPy 提供了一種 N 維數組類型 ndarray(N-dimensional array) ,它描述了相同類型的「數據類型」的集合。 多維數組: ndarray 是一個 N 維數組,其中 N 可以是任意整數。一維數組是向量,二維數組是矩陣
Thumbnail
NumPy在圖像處理、機器學習、數學和統計學等領域中被廣泛應用。 以下是一些常見的應用場景: 數據處理和分析: NumPy提供了高效的多維數組(nd array)和相應的操作函數,使得對大型數據集進行快速、有效的操作變得容易。
Thumbnail
題目敘述 題目會給我們一個輸入陣列nums,和一個指定的k值。 請問,在輸入陣列nums中,有幾個子陣列的元素總合恰好為k ? 例如: nums = [1,2,3], k = 3 則有兩個子陣列的元素總合為3,分別是[1,2] 和 [3] 如果是第一次聽到或接觸前綴和prefix的同學
Thumbnail
最近國泰世華CUBE App推出的「美股定期定額」功能,讓使用者可以方便地進行跨境理財(但讀者仍需根據自身需求審慎考量),除了享有美股定期定額的新功能,也同時享有台股定期定額的功能,可以一站滿足我們理財的需求! 透過國泰世華CUBE App線上開台股證券戶+複委託戶,流程最快僅需要5分鐘。
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
這篇內容,將會講解什麼是陣列,以及與陣列相關的知識。包括陣列的簡介、陣列的資料限制、陣列的維度、一維陣列、二維陣列。
Thumbnail
Array可以說是各種語言除了基本型別之外,最常用的資料型別與容器之一了。 Array 這種連續格子狀的資料結構,在Python要怎麼表達呢? 建立一個空的陣列 最簡單也最直接的寫法就是 array = [] # Python list [] 就對應到大家熟知的array 陣列型態的資料結
Thumbnail
pandas是用於資料操縱和分析的Python軟體庫。它建造在 NumPy 基礎上,並為操縱數值表格和時間序列,提供了資料結構和運算操作。 Pandas 的主要資料結構包含 Series 和 DataFrame 物件,由於 Pandas 本身基 Numpy 所以在使用大量資料運算時效能表現也優於原
Thumbnail
NumPy 是 Python 語言的一個擴充程式庫,支援高階大規模的多維陣列與矩陣運算的數學函式函式庫。 NumPy 2.0.0 是自 2006 年以來的第一個主要發行版本,此重要版本標誌著 NumPy 發展歷程中的一項重要里程碑,為使用者提供了豐富的增強功能和改進,並為未來的功能開發奠定了基礎。
前言 對標題上的這兩個項目有疑惑,不知道它們返回的資料的不同;查找資料後記錄下來,讓自己以後可以回來翻閱。 正文 numpy.ndarray.flatten:返回攤平的一維array,可參考NumPy: numpy.ndarray.flatten() function,有示意圖 te
np.unique 是 NumPy 庫中的一個函數,用於找出陣列中的相同的數值。這個函數可以單純過濾只取唯一值出來,也可以選擇性地返回這些唯一值在原始陣列中的中的索引和計數。 函式 unique = np.unique(ar, return_index=False, return_inver
NumPy(Numeric Python)是Python中用於科學計算的核心庫之一。它提供了高性能的多維陣列對象(即ndarray)以及用於處理這些陣列的各種函數和工具。 在NumPy中,有幾個常用的指令可以用來創建陣列
Thumbnail
NumPy 提供了一種 N 維數組類型 ndarray(N-dimensional array) ,它描述了相同類型的「數據類型」的集合。 多維數組: ndarray 是一個 N 維數組,其中 N 可以是任意整數。一維數組是向量,二維數組是矩陣
Thumbnail
NumPy在圖像處理、機器學習、數學和統計學等領域中被廣泛應用。 以下是一些常見的應用場景: 數據處理和分析: NumPy提供了高效的多維數組(nd array)和相應的操作函數,使得對大型數據集進行快速、有效的操作變得容易。
Thumbnail
題目敘述 題目會給我們一個輸入陣列nums,和一個指定的k值。 請問,在輸入陣列nums中,有幾個子陣列的元素總合恰好為k ? 例如: nums = [1,2,3], k = 3 則有兩個子陣列的元素總合為3,分別是[1,2] 和 [3] 如果是第一次聽到或接觸前綴和prefix的同學