如何用Python計算某欄平均數?

閱讀時間約 1 分鐘

首先資料如下

import pandas as pd
data =  pd.read_excel("第一次段考分數.xlsx")
raw-image

如果我們要計算【數學】該欄的平均數,可以用agg

dataAgg = data[["數學"]].agg("mean")
raw-image



我們也可以同時計算多個欄位的平均數

dataAgg = data.agg({"數學":"mean","國文":"mean"})
raw-image




如果想計算不同分組的平均數,可以先用groupby分組,再用agg計算

例如,我們用欄位【性別】作為分組,計算各組的平均數

dataGb = data.groupby("性別")
dataAgg = dataGb.agg({"數學":"mean","國文":"mean","英文":"mean","物理":"mean"})
raw-image










avatar-img
4會員
60內容數
我是果農,這裡有我的人資職涯經驗分享,與我菜鳥般的Python資料分析筆記,還有一些讀書心得,希望對大家有幫助。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
果農的沙龍 的其他內容
如何匯入Excel或CSV檔案? 如何更改欄位名稱? 如何從舊欄位中組合新欄位? 如何擷取舊欄位內容成新欄位? 如何篩選資料?
如何匯入Excel或CSV檔案? 如何更改欄位名稱? 如何從舊欄位中組合新欄位? 如何擷取舊欄位內容成新欄位? 如何篩選資料?
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
上兩篇有關List的文章,此篇文上兩章的延續,整理一些常用的方法和操作。 [Python]List(列表)新增、修改、刪除元素 [Python基礎]容器 list(列表),tuple(元組) 還有一些常用的 list 方法和操作,讓你能更靈活地處理列表數據
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
Python資料視覺化在數據分析中扮演關鍵角色,透過視覺化捕捉數據模式、趨勢和異常,透過Matplotlib等工具創建專業圖表變相對簡單和高效。
Thumbnail
本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
Thumbnail
pandas是用於資料操縱和分析的Python軟體庫。它建造在 NumPy 基礎上,並為操縱數值表格和時間序列,提供了資料結構和運算操作。 Pandas 的主要資料結構包含 Series 和 DataFrame 物件,由於 Pandas 本身基 Numpy 所以在使用大量資料運算時效能表現也優於原
Thumbnail
NumPy在圖像處理、機器學習、數學和統計學等領域中被廣泛應用。 以下是一些常見的應用場景: 數據處理和分析: NumPy提供了高效的多維數組(nd array)和相應的操作函數,使得對大型數據集進行快速、有效的操作變得容易。
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
上兩篇有關List的文章,此篇文上兩章的延續,整理一些常用的方法和操作。 [Python]List(列表)新增、修改、刪除元素 [Python基礎]容器 list(列表),tuple(元組) 還有一些常用的 list 方法和操作,讓你能更靈活地處理列表數據
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
Python資料視覺化在數據分析中扮演關鍵角色,透過視覺化捕捉數據模式、趨勢和異常,透過Matplotlib等工具創建專業圖表變相對簡單和高效。
Thumbnail
本文介紹了在進行資料分析時,將類別欄位轉換為數值欄位的方法,包括Label Encoding、One-Hot Encoding、Binary Encoding、Target Encoding和Frequency Encoding。每種方法的應用範例、優缺點和適用場景都有詳細說明。
Thumbnail
pandas是用於資料操縱和分析的Python軟體庫。它建造在 NumPy 基礎上,並為操縱數值表格和時間序列,提供了資料結構和運算操作。 Pandas 的主要資料結構包含 Series 和 DataFrame 物件,由於 Pandas 本身基 Numpy 所以在使用大量資料運算時效能表現也優於原
Thumbnail
NumPy在圖像處理、機器學習、數學和統計學等領域中被廣泛應用。 以下是一些常見的應用場景: 數據處理和分析: NumPy提供了高效的多維數組(nd array)和相應的操作函數,使得對大型數據集進行快速、有效的操作變得容易。