Probabilistic Graphical Model 1.3節 - Part 2

閱讀時間約 9 分鐘

以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。

1.3 Overview and Roadmap

1.3.1 Overview of Chapters

延續上一篇Part 1講Probabilistic Graphical Model的基礎,在Part 2的部分專注於AI當中的Inference主題,以下來看各章節的主題排序:

  • In chapter 9, we describe the basic ideas underlying exact inference in probabilistic graphical models. We first analyze the fundamental difficulty of the exact inference task, separately from any particular inference algorithm we might develop. We then present two basic algorithms for exact inference — variable elimination and conditioning — both of which are equally applicable to both directed and undirected models. Both of these algorithms can be viewed as operating over the graph structure defined by the probabilistic model. They build on basic concepts, such as graph properties and dynamic programming algorithms, to provide efficient solutions to the inference task. We also provide an analysis of their computational cost in terms of the graph structure, and we discuss where exact inference is feasible.


  • In chapter 10, we describe an alternative view of exact inference, leading to a somewhat different algorithm. The benefit of this alternative algorithm is twofold. First, it uses dynamic programming to avoid repeated computations in settings where we wish to answer more than a single query using the same network. Second, it defines a natural algorithm that uses message passing on a graph structure; this algorithm forms the basis for approximate inference algorithms developed in later chapters. Because exact inference is computationally intractable for many models of interest, we then proceed to describe approximate inference algorithms, which trade off accuracy with computational cost. We present two main classes of such algorithms.


  • In chapter 11, we describe a class of methods that can be viewed from two very different perspectives: On one hand, they are direct generalizations of the graph-based message-passing approach developed for the case of exact inference in chapter 10. On the other hand, they can be viewed as solving an optimization problem: one where we approximate the distribution of interest using a simpler representation that allows for feasible inference. The equivalence of these views provides important insights and suggests a broad family of algorithms that one can apply to approximate inference.


  • In chapter 12, we describe a very different class of methods: particle-based methods, which approximate a complex joint distribution by considering samples from it (also known as particles). We describe several methods from this general family. These methods are generally based on core techniques from statistics, such as importance sampling and Markov-chain Monte Carlo methods. Once again, the connection to this general class of methods suggests multiple opportunities for new algorithms. While the representation of probabilistic graphical models applies, to a great extent, to models including both discrete and continuous-valued random variables, inference in models involving continuous variables is significantly more challenging than the purely discrete case.


  • In chapter 14, we consider the task of inference in continuous and hybrid (continuous/discrete) networks, and we discuss whether and how the exact and approximate inference methods developed in earlier chapters can be applied in this setting.


  • For chapter 15, the representation that we discussed in chapter 6 allows a compact encoding of networks whose size can be unboundedly large. Such networks pose particular challenges to inference algorithms. In this chapter, we discuss some special-purpose methods that have been developed for the particular settings of networks that model dynamical systems.
avatar-img
170會員
452內容數
這裡將提供: AI、Machine Learning、Deep Learning、Reinforcement Learning、Probabilistic Graphical Model的讀書筆記與演算法介紹,一起在未來AI的世界擁抱AI技術,不BI。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Learn AI 不 BI 的其他內容
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters We begin in
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.2 Structured Probabilistic Models 既然要融入Uncertainty和Probability
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 Introduction 1.1 Motivation 想要有一個智能體能接收輸入訊息,進而輸出對應動作甚至做Reasoning
這個頻道將提供以下服務: 深入介紹各種Machine Learning技術 深入介紹各種Deep Learning技術 深入介紹各種Reinforcement Learning技術 深入介紹Probabilistic Graphical Model技術 不定時提供讀書筆記 讓我們一起在未
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.3 Overview and Roadmap 1.3.1 Overview of Chapters We begin in
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 1.2 Structured Probabilistic Models 既然要融入Uncertainty和Probability
以下內容是我閱讀Probabilistic Graphical Model, Koller 2009一書的讀書筆記,未來將不定期新增內容,此技術屬AI人工智慧範疇。 Introduction 1.1 Motivation 想要有一個智能體能接收輸入訊息,進而輸出對應動作甚至做Reasoning
這個頻道將提供以下服務: 深入介紹各種Machine Learning技術 深入介紹各種Deep Learning技術 深入介紹各種Reinforcement Learning技術 深入介紹Probabilistic Graphical Model技術 不定時提供讀書筆記 讓我們一起在未
你可能也想看
Google News 追蹤
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
Thumbnail
前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
未來,針對圖片生成的 prompt engineering 可能會越來越不重要。
Thumbnail
本篇文章深入介紹了圖形的基本概念、組成和應用。從圖形的基本組成,到圖的類型與種類,再到圖形演算法的三大類型,本文將接續圖形領域的深入學習,並分享了對圖形的初步認識和學習方向的小心得。希望對正在學習圖形的人有所幫助。
Thumbnail
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
Thumbnail
解決電腦上遇到的問題、證明正確性、探討效率 並且很著重溝通,說服別人你做的事是正確且有效率的。 內容: 計算模型、資料結構介紹、演算法介紹、時間複雜度介紹。
Thumbnail
Machine Learning (ML) is a captivating field empowers computers to learn from data and make predictions or decisions without explicit programming.
Thumbnail
本文介紹了人工智慧(AI)及機器學習(ML)的基本概念和關係,探討了數據在機器學習中的重要性,以及深度學習和生成式人工智慧的應用。
Thumbnail
前言 讀了許多理論,是時候實際動手做做看了,以下是我的模型訓練初體驗,有點糟就是了XD。 正文 def conv(filters, kernel_size, strides=1): return Conv2D(filters, kernel_size,
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
前言 在閱讀《強化式學習:打造最強 AlphaZero 通用演算法》時,對一些看似基本,但是重要且會影響到之後實作的項目概念有點疑惑,覺得應該查清楚,所以搞懂後記錄下來,寫下這篇文章(應該說是筆記?)。 正文 下面這段程式碼: model = Sequential() model.add
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
Thumbnail
未來,針對圖片生成的 prompt engineering 可能會越來越不重要。
Thumbnail
本篇文章深入介紹了圖形的基本概念、組成和應用。從圖形的基本組成,到圖的類型與種類,再到圖形演算法的三大類型,本文將接續圖形領域的深入學習,並分享了對圖形的初步認識和學習方向的小心得。希望對正在學習圖形的人有所幫助。
Thumbnail
圖形演算法在資料處理上扮演重要角色。本文介紹圖形的歷史、定義、技術用途,以及為什麼我們要關心圖形演算法。文末還提及圖形演算法在機器學習領域的應用。下次將介紹更詳細的圖形演算法內容。
Thumbnail
解決電腦上遇到的問題、證明正確性、探討效率 並且很著重溝通,說服別人你做的事是正確且有效率的。 內容: 計算模型、資料結構介紹、演算法介紹、時間複雜度介紹。
Thumbnail
Machine Learning (ML) is a captivating field empowers computers to learn from data and make predictions or decisions without explicit programming.