大型語言模型

含有「大型語言模型」共 61 篇內容
全部內容
發佈日期由新至舊
一篇來自煉金工坊的提示工程學筆記。我們將揭示可被複製的儀式步驟(科學),並附上我在實踐中的個人哲思(玄學)。一趟深入咒語構築核心的雙軌之旅。
Thumbnail
也許大部分的人聽過甚至用過 ChatGPT ,也可能看過 DeepSeek 的崛起影響了世界等等的報導,但有沒有想過它們到底為什麼突然能派上用場?從早期只能補字的小模型,到如今能進行翻譯、推理甚至聊天,這篇針對「湧現能力」與「上下文學習」來說明LLM 從「不能用」到「很好用」的轉變。
Thumbnail
最近大家都在擔心AI會不會讓我們變笨,這讓羊羹我想起過去我們對網路的焦慮。其實真正的問題不在工具,而在我們自己的學習習慣。與其被動地搜尋答案不如學習如何與AI建構一場有深度的對話,將它從一個答案販賣機,升級為我們思考時最強大的陪練員。這是一場思維的升級,不僅不會被淘汰,反而變得比以往更強大。
Thumbnail
採用 SynEval 工具,從「隱私保護(Privacy preservation)」出發,同時兼顧「保真度(Fidelity)」與「實用性(Utility)」,確保在支持下游任務的前提下,不洩露敏感資訊。利用TSTR框架和MAE、準確率等指標評估實用性,透過推斷攻擊評估隱私保護效果。
Thumbnail
延續上篇所介紹的 Nemotron-4 340B Technical Report 細說合成資料集的流程,可以依據需要使用其中的步驟(流程),建置自己的合成資料生產線,最後附上範例 Prompt
Thumbnail
由 NVIDIA 發表,包括 Base、Instruct 與 Reward 三個版本,在 alignment 過程中超過 98% 的微調資料來自合成資料生成流程,展現有效運用 synthetic data 發展對齊模型的能力。
Thumbnail
Phi‑3 系列透過大量高品質與合成資料訓練,並結合 RLHF、對齊與自動測試,推出 3.8B 至 14B 的小模型與 4.2B 參數的多模態 Phi‑3‑Vision,在理解、推理、生成與圖像理解任務上表現突破,支援手機部署與低延遲場景。
Thumbnail
Microsoft Research 發表《Textbooks Are All You Need II: phi-1.5 technical report》,Phi-1.5 展現高品質合成資料(教科書等級)的潛力,以僅 1.3B 參數在常識推理與語言理解上媲美大型模型,挑戰「參數規模至上」的傳統觀點
Thumbnail
使用大型語言模型(LLM)生成合成資料作為訓練語料的可行性與實務應用。根據研究顯示,合成資料在某些任務上可達到與真實資料相近的效果,具備部分替代潛力。高品質訓練資料對模型表現的重要性,並討論合成資料的生成策略與評估方法。
Thumbnail
本文探討大型語言模型中提示工程的演進,從 Few-shot CoT、Zero-shot CoT 到 Self-Consistency 和Automatic CoT。說明優缺點及應用場景,並重點介紹 Automatic CoT如何提升模型效能。
Thumbnail