淺談用線性迴歸預測股票價格

更新於 發佈於 閱讀時間約 3 分鐘

這篇文章的標題有「預測」二字,但看完之後請大家思考一下,這種基於「統計學」、「機器學習」的預測方法,是否跟你心中的「預測」相差甚遠呢?

這篇文章會簡介一下用線性回歸預測股票價格的概念。

線性回歸

何謂回歸(Regression)? 回歸是一種統計學上分析數據的方法,其目的在於找出一個最能夠代表觀測資料關係的函數,它所得出的結論是連續的。例如:想找出年齡對應薪資的關係或者隨著時間推進的股票價格。 在只有兩個變數的平面上,也就是二維空間,找出一條能夠代表資料的線,我們稱之為簡單線性回歸(Simple Linear Regression)。 三維以上的空間中,利用線性回歸找出一能夠代表資料的超平面(Hyperplane),我們稱之為多元線性回歸 (Multiple Linear Regression)。


raw-image


線性回歸是一種用於模擬因變量(y)和自變量(x)之間關係的方法。通過簡單的線性回歸,只有一個自變量x。可能有許多獨立變量屬於多元線性回歸的範疇。

在這種情況下,我們只有一個自變量即日期。對於第一個日期上升到日期向量長度的整數,該日期將由1開始的整數表示,該日期可以根據時間序列數據而變化。當然,我們的因變量將是股票的價格。為了理解線性回歸,您必須了解您可能在學校早期學到的相當基本的等式。

y = a + bx

  • Y =預測值或因變量
  • b =線的斜率
  • x =係數或自變量

像是下圖的範例,可以想像成10號到26號每天的價格圖,紅點是每一天的價格落點(12號是190元、14號是210元….)而綠色的線則是我們根據資料有的12的紅點來擬合出一條最接近的方程式。


raw-image


從本質上講,上面那個簡單的方程式就可以構成我們對數據的擬合。在運算(Ordinary Least Squares)過後即找到最佳擬合線,最小化平方誤差和(SSE)與股票價格(y)的實際值以及我們在數據集中所有點的預測股票價格。

迴歸分析主要目的是用來解釋資料過去的現象及由自變數來預測依變數未 來可能產生之數值。而簡單線性迴歸分析則是用一直線來解釋一個自變數與一 個依變數的關係。

不知道大家看完之後,對基本的「預測」是否有一點點認識,如果有任何問題也歡迎留言討論。


我們自己的Podcast也開張了
每週更新,希望帶給大家機器學習的相關內容
我們也會在每個月11號 帶給大家這個月的機器學習分析結果
歡迎大家來聽聽 並和我們也分享資訊
FB: https://reurl.cc/WL19r9
Podcasts:
Apple: https://reurl.cc/D63Dz6
SoundOn: https://reurl.cc/n0OXad
Spotify :https://reurl.cc/XkV3dR
留言
avatar-img
留言分享你的想法!
avatar-img
史塔克實驗室的沙龍
113會員
94內容數
史塔克音近Stock,我們是一群喜歡研究股市市場並且利用機器學習分析的資料科學家,我們最常使用到Python來做量化投資,研究了一段時間的財經跟程式,希望能把我們自己分析的分析成果,和大家一起分享看看,並且和大家在這一條漫長的路一起學習成長!
2024/10/13
2024年只剩下最後兩個月,九月份ETF選股機器人的績效為-0.5%,而0050的績效則達到了9.8%。正如我們上週提到的,在台積電的帶領下,0050表現相當亮眼。許多分析師認為,台積電於10月17日的法說會,加上美國降息後的資金行情,有可能為台股帶來進一步的增溫。 降息效應與籌碼觀察
Thumbnail
2024/10/13
2024年只剩下最後兩個月,九月份ETF選股機器人的績效為-0.5%,而0050的績效則達到了9.8%。正如我們上週提到的,在台積電的帶領下,0050表現相當亮眼。許多分析師認為,台積電於10月17日的法說會,加上美國降息後的資金行情,有可能為台股帶來進一步的增溫。 降息效應與籌碼觀察
Thumbnail
2024/02/21
近期,科技業裁員消息不斷,裁員潮席捲各大知名企業,成千上萬的員工面臨著失業的風險。這不僅是一場公司內部重組,更是一場對整個行業結構的巨大挑戰。今天,我們會來聊一下這個主題,以及它對當前的失業率和未來的就業趨勢可能帶來的影響。請緊跟我們的節目,一同來了解這個為人們帶來焦慮的問題。 網路通訊設備大
Thumbnail
2024/02/21
近期,科技業裁員消息不斷,裁員潮席捲各大知名企業,成千上萬的員工面臨著失業的風險。這不僅是一場公司內部重組,更是一場對整個行業結構的巨大挑戰。今天,我們會來聊一下這個主題,以及它對當前的失業率和未來的就業趨勢可能帶來的影響。請緊跟我們的節目,一同來了解這個為人們帶來焦慮的問題。 網路通訊設備大
Thumbnail
2024/01/30
#美股收紅 #標普500指數改寫歷史新高  #中國經濟遇到了大麻煩 現在是怎樣,直接二個世界嗎? 美國最近股票漲成這樣,中國爛成這樣,還好我沒去接騰訊...而且華爾街日報還直接有一篇「Americans Are Suddenly a Lot More Upbeat About the
Thumbnail
2024/01/30
#美股收紅 #標普500指數改寫歷史新高  #中國經濟遇到了大麻煩 現在是怎樣,直接二個世界嗎? 美國最近股票漲成這樣,中國爛成這樣,還好我沒去接騰訊...而且華爾街日報還直接有一篇「Americans Are Suddenly a Lot More Upbeat About the
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
前言 這篇會拿Finlab上的策略與機器學習預測線圖的因子進行結合。由於模型是透過2007-2011年的線圖作為訓練資料,回測的時候會從2012年開始以示公平。 還沒看過前面兩篇的可以點下面連結,會比較看得懂接下來的內容。 第一篇: 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲
Thumbnail
前言 這篇會拿Finlab上的策略與機器學習預測線圖的因子進行結合。由於模型是透過2007-2011年的線圖作為訓練資料,回測的時候會從2012年開始以示公平。 還沒看過前面兩篇的可以點下面連結,會比較看得懂接下來的內容。 第一篇: 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲
Thumbnail
還沒有看過上一篇的可以點擊下面連結 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(1)論文解析。 這一篇會把注意力放在論文提到的技術並套用在台股市場,也會使用論文中的方法進行驗證,看看是否在台股也有一樣的超額報酬。 資料生成 第一步也是最難的一步-資料生成。 這裡
Thumbnail
還沒有看過上一篇的可以點擊下面連結 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(1)論文解析。 這一篇會把注意力放在論文提到的技術並套用在台股市場,也會使用論文中的方法進行驗證,看看是否在台股也有一樣的超額報酬。 資料生成 第一步也是最難的一步-資料生成。 這裡
Thumbnail
前言 這個系列打算分三篇來完成。 第一篇先來解析論文中的方法以及實驗結果。 第二篇會把這篇論文應用在台股上,評估效果如何。 第三篇會把這篇論文實作成因子套用在Finlab上進行回測。 動機 今天要介紹的論文是這篇 (Re-)Imag(in)ing Price Trends。會知道
Thumbnail
前言 這個系列打算分三篇來完成。 第一篇先來解析論文中的方法以及實驗結果。 第二篇會把這篇論文應用在台股上,評估效果如何。 第三篇會把這篇論文實作成因子套用在Finlab上進行回測。 動機 今天要介紹的論文是這篇 (Re-)Imag(in)ing Price Trends。會知道
Thumbnail
大綱: 1.可能會遇到的問題 2.時間區間的漲跌幅報酬計算 (1)抓取歷史股價 (2)抓取特定日期的收盤價 (3)自動抓取最後一筆報價資料 (4)VLOOKUP欄位在抓取日期的問題 3.抓取年初跟今日報價計算累積報酬 4.歷史股價平均值計算 5.標準差的計算 6.波動度的比較
Thumbnail
大綱: 1.可能會遇到的問題 2.時間區間的漲跌幅報酬計算 (1)抓取歷史股價 (2)抓取特定日期的收盤價 (3)自動抓取最後一筆報價資料 (4)VLOOKUP欄位在抓取日期的問題 3.抓取年初跟今日報價計算累積報酬 4.歷史股價平均值計算 5.標準差的計算 6.波動度的比較
Thumbnail
1. 時間序列的基本概念 常見的時間序列分解方式有以下兩種: 1-1. 加法模型(Additive Model): Y(t)=Trend(t)+Cycle(t)+Seasonal(t)+Irregular(t) 適用於季節性的規模基本保持不變,不隨原始序列水平增減而變化(如圖1(a))。
Thumbnail
1. 時間序列的基本概念 常見的時間序列分解方式有以下兩種: 1-1. 加法模型(Additive Model): Y(t)=Trend(t)+Cycle(t)+Seasonal(t)+Irregular(t) 適用於季節性的規模基本保持不變,不隨原始序列水平增減而變化(如圖1(a))。
Thumbnail
除了如上篇那樣的學術分析之外,我們還有其他方式可以用來探討股價走勢,本篇從以下兩點作出發,並帶點資料科學的思維方式來做探討:技術指標的運用,與外在因素的作用(包含市場消息、公司基本面等)。
Thumbnail
除了如上篇那樣的學術分析之外,我們還有其他方式可以用來探討股價走勢,本篇從以下兩點作出發,並帶點資料科學的思維方式來做探討:技術指標的運用,與外在因素的作用(包含市場消息、公司基本面等)。
Thumbnail
價格走勢取決於市場資金和心理,而影響這兩項的因素則是前文提過的四大面向:基本面、技術面、籌碼面、消息面。這裡要談的不是這些,而是價格走勢自身的一些特性,是經濟學家與統計學家所在專研的事情,因此本篇有滿滿的數學與專有名詞。老話一句:無誠勿試!
Thumbnail
價格走勢取決於市場資金和心理,而影響這兩項的因素則是前文提過的四大面向:基本面、技術面、籌碼面、消息面。這裡要談的不是這些,而是價格走勢自身的一些特性,是經濟學家與統計學家所在專研的事情,因此本篇有滿滿的數學與專有名詞。老話一句:無誠勿試!
Thumbnail
A.i人工智慧真的能預測股市嗎 ? 我們不免俗再提到機器學習,前幾年機器學習,人工智慧這些名詞非常的夯,引領風潮,全世界都在瘋狂,因為AlphaGo 打敗了無數個圍棋高手,開始炒熱機器學習。有人也許好奇,AlphaGo的技術不就是人工神經網路嗎,他的概念由來已久......
Thumbnail
A.i人工智慧真的能預測股市嗎 ? 我們不免俗再提到機器學習,前幾年機器學習,人工智慧這些名詞非常的夯,引領風潮,全世界都在瘋狂,因為AlphaGo 打敗了無數個圍棋高手,開始炒熱機器學習。有人也許好奇,AlphaGo的技術不就是人工神經網路嗎,他的概念由來已久......
Thumbnail
移動平均線是過去一段時間內,投資人的平均成本,當股價回跌修正,技術分析說法是回測均線「支撐」,大家的平均成本價位就不容易跌破?
Thumbnail
移動平均線是過去一段時間內,投資人的平均成本,當股價回跌修正,技術分析說法是回測均線「支撐」,大家的平均成本價位就不容易跌破?
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News