什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(2)台股實測

更新於 發佈於 閱讀時間約 3 分鐘
投資理財內容聲明
raw-image



還沒有看過上一篇的可以點擊下面連結

什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(1)論文解析

這一篇會把注意力放在論文提到的技術並套用在台股市場,也會使用論文中的方法進行驗證,看看是否在台股也有一樣的超額報酬。



資料生成

第一步也是最難的一步-資料生成。

這裡使用到的資料為股票的開盤價、收盤價、最高價、最低價、成交量。需要先把這些資料標準化,再轉換成0和1的二維陣列,最後將二維陣列轉換成黑白的像素線圖。

我使用finlab的python套件獲取開高低收量的資料後,就能夠轉換成以下不同週期的線圖。


5日線圖

5日線圖


20線圖

20線圖

60日線圖

60日線圖


可以看到,除了依照周期區分之外,也可以依照是否使用均線/成交量,產生不同的線圖資料,進而訓練不同的模型。

同時也可以注意到,線圖中沒辦法得知是哪隻股票、股價、成交量為何,所呈現的都是標準化後的資訊。


資料切割

finlab的資料集橫跨2007-2023年,依照論文的方式,拿前三分之一作為訓練及驗證,最後三分之二做測試。

raw-image


2007-2011年的資料轉換成線圖後,會隨機打亂,並切割成訓練集(90%)和驗證集(10%)。2012-2023年的資料則會在模型訓練好後,作為實測的測試集。


模型訓練

這裡選擇訓練的模型是I5/R5,也就是拿五日的線圖去預測五日後的漲跌,而使用的線圖是包含均線以及成交量的。

會選擇這個模型當作實驗是因為他在論文中的表現是最好的。然而,在接下來的finlab實際回測中,我會使用不同模型進行回測。這將包含使用不同的時間週期、不同的線圖變化(如有無均線及成交量)。這些模型在不同量化策略下會有不同的效果,這裡就先賣個關子了。

模型的架構以及參數都比照論文的設定,如下圖。

模型架構圖

模型架構圖

訓練會持續直到驗證集的loss持續兩個epochs都沒辦法進步為止。


實驗結果

這裡會使用到2012-2023年的資料進行實驗。

首先是十等分的實驗。將模型預測出來的結果依照分數進行排序,並切成十等分。第一分位代表預測的數字越低,而第十分位則最高。結果如下圖

十等分圖

十等分圖


可以發現,隨著預測的分數越高,報酬率也跟著上升。紅色的線代表0050的平均報酬,從第五分位開始打敗0050的報酬。

論文中的第一分位平均報酬為負的,在這樣的條件下作多空對沖非常適合。然而在台股市場上並沒有這樣的條件,做多空對沖的話反而會拉低報酬,不過如果想要更平滑的報酬曲線的話仍然可以使用多空對沖。

raw-image

上圖為實際操作的流程。首先會將股價資訊轉換成線圖,接著會透過CNN模型預測上漲下跌機率,根據上漲的機率進行排序後,買入前n檔股票,每五日做一次換股。

假設n=20。則買進前20檔、多空對沖(買進前20同時放空後20檔)、以及0050的走勢比較圖如下。

n=20

n=20


可以看到只買進前二十檔的績效遠超過0050的報酬,而多空對沖則和0050相當,不過曲線更為平滑一些。

假設n=10%。則買進前10%、多空對沖(買進前10%同時放空後10%)、以及0050的走勢比較圖如下。

n=10%(約203檔)

n=10%(約203檔)


可以發現只買進前10%的報酬雖然下降,但仍然很明顯的大敗大盤,而多空對沖的策略則更加平滑,但報酬也跟著降低了。



總結

上一篇主要在介紹論文中的方法,這一篇則是把論文中的方法套用在台股上實驗。可以發現這個方法(或說這個因子)在台股上也是十分顯著有用的,下一篇我將把這個因子結合finlab上的策略進行優化。

覺得有幫助或是有趣的歡迎點贊關注,也歡迎贊助~。🙇

留言
avatar-img
留言分享你的想法!
Li way Cheng-avatar-img
發文者
2023/12/25
avatar-img
Li way Cheng的沙龍
30會員
10內容數
這個專題會分享有關投資、量化、因子以及機器學習相關的內容。主要會以我有興趣的內容進行分享,希望能透過實際回測及實驗做為佐證,找尋股票市場中的ALPHA。
Li way Cheng的沙龍的其他內容
2024/07/24
近幾年來,個股期貨的流動性越來越好,也有越來越多靠著股票期貨發家致富的故事,當然也有人不當使用這個商品而破產。這篇文章不會教你如何靠股票期貨發財,而是利用股票及期貨之間的差異性進行短線風險性較低的類套利交易。
Thumbnail
2024/07/24
近幾年來,個股期貨的流動性越來越好,也有越來越多靠著股票期貨發家致富的故事,當然也有人不當使用這個商品而破產。這篇文章不會教你如何靠股票期貨發財,而是利用股票及期貨之間的差異性進行短線風險性較低的類套利交易。
Thumbnail
2024/03/22
前言 這次除了00940上市的話題很熱門之外,吃00940豆腐的話題也是非常火熱。老實說身邊有在吃豆腐的人比有買00940的人多非常多,這也導致高殖利率股票在這一周波動非常大。 可以看到前十大成分股之一的漢唐最近兩周上下波動非常劇烈,基本上都是長紅K或是長黑K所組成。 手中00940持
Thumbnail
2024/03/22
前言 這次除了00940上市的話題很熱門之外,吃00940豆腐的話題也是非常火熱。老實說身邊有在吃豆腐的人比有買00940的人多非常多,這也導致高殖利率股票在這一周波動非常大。 可以看到前十大成分股之一的漢唐最近兩周上下波動非常劇烈,基本上都是長紅K或是長黑K所組成。 手中00940持
Thumbnail
2024/03/15
前言 最近市場上最熱門的股票不是台積電也不是任何一檔飆股,而是還沒上市的00940元大臺灣價值高息。這檔ETF申購首日就突破650億元,最終規模應該很有機會接近2000億。2000億的資金湧入成分股勢必會造成股價被拉抬的情況發生,如果能夠提前在00940買進前先卡位的話,或許就能偷吃到00940的
Thumbnail
2024/03/15
前言 最近市場上最熱門的股票不是台積電也不是任何一檔飆股,而是還沒上市的00940元大臺灣價值高息。這檔ETF申購首日就突破650億元,最終規模應該很有機會接近2000億。2000億的資金湧入成分股勢必會造成股價被拉抬的情況發生,如果能夠提前在00940買進前先卡位的話,或許就能偷吃到00940的
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
本研究使用了盤中逐筆成交資料(Tick-by-tick Data)來進行股票價格的預測,並討論了馬可夫鏈模型和擴散核模型在這方面的應用。研究結果表明,大多數股票的未來三秒價格可以在少於22個狀態中找到,顯示了交易價格的低不確定性。此外,研究還發現波動性更大和價格更高的股票更難以準確預測。
Thumbnail
本研究使用了盤中逐筆成交資料(Tick-by-tick Data)來進行股票價格的預測,並討論了馬可夫鏈模型和擴散核模型在這方面的應用。研究結果表明,大多數股票的未來三秒價格可以在少於22個狀態中找到,顯示了交易價格的低不確定性。此外,研究還發現波動性更大和價格更高的股票更難以準確預測。
Thumbnail
作者 Only 系列文章,【一天一千字,進化每一次】很多股票投資人,都想要預測,什麼時候股票會漲,什麼時候股票會跌,但是最廣為人的K線等技術指標,最容易失靈的原因,他是透過歷史數據而形成的走勢圖,就好像看這後照鏡開車,所以使用景氣燈號,是一個更好的方法。
Thumbnail
作者 Only 系列文章,【一天一千字,進化每一次】很多股票投資人,都想要預測,什麼時候股票會漲,什麼時候股票會跌,但是最廣為人的K線等技術指標,最容易失靈的原因,他是透過歷史數據而形成的走勢圖,就好像看這後照鏡開車,所以使用景氣燈號,是一個更好的方法。
Thumbnail
本文為技術分析進階,適合有技術分析基礎者閱讀,不建議未學過基礎技術分析者閱讀
Thumbnail
本文為技術分析進階,適合有技術分析基礎者閱讀,不建議未學過基礎技術分析者閱讀
Thumbnail
前言 這篇會拿Finlab上的策略與機器學習預測線圖的因子進行結合。由於模型是透過2007-2011年的線圖作為訓練資料,回測的時候會從2012年開始以示公平。 還沒看過前面兩篇的可以點下面連結,會比較看得懂接下來的內容。 第一篇: 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲
Thumbnail
前言 這篇會拿Finlab上的策略與機器學習預測線圖的因子進行結合。由於模型是透過2007-2011年的線圖作為訓練資料,回測的時候會從2012年開始以示公平。 還沒看過前面兩篇的可以點下面連結,會比較看得懂接下來的內容。 第一篇: 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲
Thumbnail
還沒有看過上一篇的可以點擊下面連結 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(1)論文解析。 這一篇會把注意力放在論文提到的技術並套用在台股市場,也會使用論文中的方法進行驗證,看看是否在台股也有一樣的超額報酬。 資料生成 第一步也是最難的一步-資料生成。 這裡
Thumbnail
還沒有看過上一篇的可以點擊下面連結 什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(1)論文解析。 這一篇會把注意力放在論文提到的技術並套用在台股市場,也會使用論文中的方法進行驗證,看看是否在台股也有一樣的超額報酬。 資料生成 第一步也是最難的一步-資料生成。 這裡
Thumbnail
前言 這個系列打算分三篇來完成。 第一篇先來解析論文中的方法以及實驗結果。 第二篇會把這篇論文應用在台股上,評估效果如何。 第三篇會把這篇論文實作成因子套用在Finlab上進行回測。 動機 今天要介紹的論文是這篇 (Re-)Imag(in)ing Price Trends。會知道
Thumbnail
前言 這個系列打算分三篇來完成。 第一篇先來解析論文中的方法以及實驗結果。 第二篇會把這篇論文應用在台股上,評估效果如何。 第三篇會把這篇論文實作成因子套用在Finlab上進行回測。 動機 今天要介紹的論文是這篇 (Re-)Imag(in)ing Price Trends。會知道
Thumbnail
在上一篇文章中,我們學會了如何繪製最新的分鐘圖,讓我們了解最新一日的個股股價變化,不過有時分鐘圖太過細小,並無法了解到個股整體的趨勢狀況,這時我們就必須要使用到日線圖,因此,今天我們就來學習如何繪製日線圖吧!!
Thumbnail
在上一篇文章中,我們學會了如何繪製最新的分鐘圖,讓我們了解最新一日的個股股價變化,不過有時分鐘圖太過細小,並無法了解到個股整體的趨勢狀況,這時我們就必須要使用到日線圖,因此,今天我們就來學習如何繪製日線圖吧!!
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News