什麼?!AI也看得懂k線圖?利用機器學習來判斷股票漲跌。(1)論文解析

閱讀時間約 6 分鐘
  • 文內如有投資理財相關經驗、知識、資訊等內容,皆為創作者個人分享行為。
  • 有價證券、指數與衍生性商品之數據資料,僅供輔助說明之用,不代表創作者投資決策之推介及建議。
  • 閱讀同時,請審慎思考自身條件及自我決策,並應有為決策負責之事前認知。
  • 方格子希望您能從這些分享內容汲取投資養份,養成獨立思考的能力、判斷、行動,成就最適合您的投資理財模式。
raw-image



前言

這個系列打算分三篇來完成。

第一篇先來解析論文中的方法以及實驗結果。

第二篇會把這篇論文應用在台股上,評估效果如何。

第三篇會把這篇論文實作成因子套用在Finlab上進行回測。



動機

今天要介紹的論文是這篇 (Re-)Imag(in)ing Price Trends。會知道這篇論文是看到FCDO在臉書上分享了這篇論文,覺得很有趣就把這篇看完了。此論文收錄在頂尖的金融期刊Journal of Finance上,又有AQR的Bryan Kelly加持,可以說是非常值得讀的一篇論文。



論文解析


研究目的

這篇論文改變了預測股市趨勢的方式。與傳統的測試理論或固定模式不同,他們選擇運用機器學習,利用股價線圖作為數據來探索潛在上漲的股票。有趣的是,這些模型不同於以往研究中常見的股價趨勢信號,它們提供更精準的報酬預測,並且能夠轉化為更具獲利性的投資策略。更令人驚奇的是,這些模型似乎與時間尺度和地區都無關,無論是短期還是長期、美國還是國際市場,都呈現出卓越的表現。總體來說,這篇論文透過獨特的視角,旨在找出更為卓越的股市預測方法。

然而論文中提到的股票線圖和我們平常用的k線有些不同,他們所使用的是美國線(下圖為特斯拉的美國線圖)。


raw-image


直線呈現的最高點代表最高價,而最低點則代表最低價。左側橫線表示開盤價,而右側橫線表示收盤價。

OHLC chart (from wikipedia)

OHLC chart (from wikipedia)



研究方法

美國線雖然看起來比k線圖還簡單,但圖中的顏色、文字以及不同股票的尺度差異使得AI在訓練時難以學習和收斂。為解決此問題,本論文將美國線圖簡化如下:

包含開高低收、均線、成交量的線圖

包含開高低收、均線、成交量的線圖

將圖片轉為黑白,並降低畫質,同時將不同股票的尺度標準化。統一的線圖有助於AI更迅速學習股價走勢和成交量資訊。

另外,論文中使用到的AI模型是CNN(如果沒聽過CNN但有興趣認識的話可以參考這部影片)。是專為影像辨識而設計的模型,非常適合辨識股價線圖趨勢。

根據不同時間區間,線圖可分為5日、20日和60日,並針對不同周期設計了不同複雜度的CNN模型。(如下圖)。

raw-image

週期越長的圖片複雜度越高,信息更豐富,因此使用的CNN模型也更複雜。

CNN模型預測的目標是y天後股價是上漲還是下跌,論文中僅關注漲跌,而非漲跌幅。上漲標注為1,下跌標注為0。模型需要針對給定的線圖預測1或0。問題可表示為Ix/Ry,其中x代表時間週期,y代表y天後市場漲跌(例如I5/R5表示使用五天線圖預測五天後市場上漲還是下跌)。



模型訓練

首先,研究人員收集了1993年至2019年的美股資料。他們以1993年至2000年的數據作為訓練集,用來訓練CNN模型;而2001年至2019年的數據則被用作測試集,以驗證模型是否成功學習了如何透過線圖來辨別股價漲跌趨勢。

隨後,研究人員根據不同週期的線圖(I5、I20、I60)和不同週期的預測值(R5、R20、R60),總共培訓了9個模型(I5/R5、I5/R20、I5/R60、I20/R5、I20/R20、I20/R60、I60/R5、I60/R20、I60/R60)



模型表現

經過訓練的模型以2001年至2019年的資料進行預測和評估。CNN模型將每張圖片轉換為介於0和1之間的數值,數值越接近1表示上漲的機率越高,反之則下跌機率越高。

按照模型轉換的數值排序預測結果,並將其分為十等分。第一等分包含模型預測分數最低的股票,而第十等分包含模型預測分數最高的股票。結果如下圖所示

raw-image

可觀察到I5/R5模型的表現最為優越,而隨著等分升高,報酬率也相應提高,反之,較低等分則顯示報酬率較差。這顯示模型預測的結果能夠有效預測股票的漲跌。與其他因子相比,如MOM(動能)、STR(月短期反轉)、WSTR(周短期反轉)等因子也呈現優異的表現。

下圖呈現將上述結果以圖表方式呈現,顯示大多數因子在第一等分的表現相對較低,而在第十等分的表現相對較高。值得注意的是,透過CNN產生的訊號在第十等分呈現更為顯著的報酬,同時第一等分也顯示更為顯著的負報酬。這樣的結果非常適合應用於多空對沖策略。

raw-image



下圖就是透過多空對沖進行交易的報酬曲線圖,作法就是做多第十等分同時放空第一等分。

raw-image



不論是I5/R5、I20/R5還是I60/R5,其表現均明顯優於大盤(SPY),且優於其他因子。這顯示CNN模型確實成功學習如何透過股票線圖來準確判斷漲跌。



模型學到了什麼?


為了深入了解CNN模型的學習成果,本論文將該CNN模型與傳統因子進行了比較。研究著重於近期價格趨勢(包括動能指標(MOM)、月短期反轉(STR)、周短期反轉(WSTR)以及距離52周高點的距離(52WH))、風險(包括β值(Beta)和波動性(Volat.))以及流動性(如買賣價差(Bid-Ask)、成交金額(Dollar Volume)、無交易日數(Zero Trade)、價格延遲(Price Delay)、市值規模(Size)以及Amihud流動性(Illiq.))等因子的對比,具體內容見下圖。

raw-image


透過觀察此圖,我們可以發現當模型以"未來5日後的漲跌 (R5)" 作為預測目標時,其相關性與WSTR達到最高點。然而,隨著預測目標週期延長至20日 (R20) 或60日 (R60),相關性明顯下降,甚至在60日時幾乎降至零。

值得注意的是,動能 (MOM) 在長週期線圖 (I60) 中展現出顯著的相關性,隨著線圖週期的遞減而遞減,到5日線圖 (I5) 時幾乎為零。

最令人驚奇的是,CNN 居然學到了除價量之外的資訊。我們可以觀察到60日線圖 (I60) 與風險以及流動性的因子之間存在相當大的相關性。需要強調的是,這些線圖都經過歸一化處理,因此無法得知每張線圖的原始股價和原始成交量。在這樣的前提下,CNN 模型仍然能夠捕捉到非價量的訊息,例如52週最高價、波動度、交易額、市值、流動性等因子。

結語

這是我第一次嘗試發文解析論文,有哪裡看不懂或不清楚的歡迎留言。下一篇我將把這篇論文的方法實作在台股上,覺得有幫助的歡迎幫忙點讚,也歡迎贊助~。

27會員
11內容數
這個專題會分享有關投資、量化、因子以及機器學習相關的內容。主要會以我有興趣的內容進行分享,希望能透過實際回測及實驗做為佐證,找尋股票市場中的ALPHA。
留言0
查看全部
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
Thumbnail
不難發現大語言模型能對生產力與學習帶來許多幫助,未來教育型 AI 機器人很大機率將會成為主流,使用 AI 輔助學習、即時從 AI 獲得解答、利用 AI 學習新技能都會是新的學習場景。根據教育市調機構 HolonIQ 過去的報告顯示全球教育人工智能的投入預計 2025 年將達 60 億。
Thumbnail
未來,人工智慧(AI)預計將在各行各業帶來迅速的變革,重新塑造生活方式。文章探討了AI的定義,強調其模擬人類思維和行為的能力。AI已廣泛應用於手機、電腦、醫療、商業、教育和法律等領域,並影響生活的方方面面。
Thumbnail
2023年才到三月為止,VC投入生成式AI的市場的估值就已經超越了前兩年的總和,可以想見整年下來絕對是一個數量級以上的差異。難道AI是這兩年才發明出來的嗎? 為什麼忽然之間全世界都在關注AI呢?  這就是我們這邊文章想要探討的,究竟AI發展到現在是否有什麼突破? 為什麼大家開始關注起AI。
Thumbnail
正文1,724字,主要跟你分享未來 AI 變更強更效率的兩個層面──數據與模型框架。你會從實務者的觀點,知道數據跟 AI (或機器學習模型) 表現間的關係;了解 ChatGPT 為什麼有運算資源的困擾;同時,你也會看到目前最新改善 AI 運算速度的技術發表。
Thumbnail
本文回答幾個問題:(一) 什麼叫做湧現;(二)湧現是什麼現象;(三)為什麼我們造不出自己的超級 AI。看完後,你會理解現在 AI 的現象跟趨勢、一些技術與專有名詞,像是參數、大型機構與他們模型的名字。
Thumbnail
繼大麻、人造肉、Gamestop,我最近覺得會被炒的股可能是 C3.ai 這家公司。 年初至今,也就是YTD回報,C3.ai(代號AI)的股價已經飆升了 133%,因為投資者對AI股票的狂熱正在升溫。儘管年初至今股價飆升,但 C3.ai 仍比 2020 年 12 月創下的每股 183.90 美元的歷
Thumbnail
近年來不斷有經濟預測分析所說的:「xx年內什麼行業會不見」已經不是預測,而是現在進行式,專家所說的,二十年內所有勞動階級都會被取代,其實是太過樂觀的預估,因為不只勞動業,而是幾乎所有行業都將會產生天翻地覆的改變。 當人工智慧愈來愈厲害,設置價格愈來愈低廉時,這種可以二十四小時工作,不必管一例一休,不
Thumbnail
☆2019美國「鸚鵡螺圖書獎」獲獎書籍☆ ☆普立茲獎得主《第六次大滅絕》作者 伊麗莎白‧寇伯特激賞之書☆ ☆亞馬遜書店逾兩百則評價,讀者平均四點六顆星好評推薦☆ ➢➢嚴峻的氣候與環境挑戰當前,全球糧食危機迫在眉睫, 想要繼續餵飽全世界,就得在傳統與與創新間找出「第三條路」!
Thumbnail
本文為「Robotics 2.0系列」第二篇。在前一篇文章〈AI重新定義機器人〉中,我們談到AI機器人和傳統機器人最大的不同在於自主學習能力,而這樣的改變將使得AI機器人有潛力顛覆各大產業。但究竟AI機器人會發展出什麼樣的應用?對各個產業又會有什麼影響?
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
Thumbnail
不難發現大語言模型能對生產力與學習帶來許多幫助,未來教育型 AI 機器人很大機率將會成為主流,使用 AI 輔助學習、即時從 AI 獲得解答、利用 AI 學習新技能都會是新的學習場景。根據教育市調機構 HolonIQ 過去的報告顯示全球教育人工智能的投入預計 2025 年將達 60 億。
Thumbnail
未來,人工智慧(AI)預計將在各行各業帶來迅速的變革,重新塑造生活方式。文章探討了AI的定義,強調其模擬人類思維和行為的能力。AI已廣泛應用於手機、電腦、醫療、商業、教育和法律等領域,並影響生活的方方面面。
Thumbnail
2023年才到三月為止,VC投入生成式AI的市場的估值就已經超越了前兩年的總和,可以想見整年下來絕對是一個數量級以上的差異。難道AI是這兩年才發明出來的嗎? 為什麼忽然之間全世界都在關注AI呢?  這就是我們這邊文章想要探討的,究竟AI發展到現在是否有什麼突破? 為什麼大家開始關注起AI。
Thumbnail
正文1,724字,主要跟你分享未來 AI 變更強更效率的兩個層面──數據與模型框架。你會從實務者的觀點,知道數據跟 AI (或機器學習模型) 表現間的關係;了解 ChatGPT 為什麼有運算資源的困擾;同時,你也會看到目前最新改善 AI 運算速度的技術發表。
Thumbnail
本文回答幾個問題:(一) 什麼叫做湧現;(二)湧現是什麼現象;(三)為什麼我們造不出自己的超級 AI。看完後,你會理解現在 AI 的現象跟趨勢、一些技術與專有名詞,像是參數、大型機構與他們模型的名字。
Thumbnail
繼大麻、人造肉、Gamestop,我最近覺得會被炒的股可能是 C3.ai 這家公司。 年初至今,也就是YTD回報,C3.ai(代號AI)的股價已經飆升了 133%,因為投資者對AI股票的狂熱正在升溫。儘管年初至今股價飆升,但 C3.ai 仍比 2020 年 12 月創下的每股 183.90 美元的歷
Thumbnail
近年來不斷有經濟預測分析所說的:「xx年內什麼行業會不見」已經不是預測,而是現在進行式,專家所說的,二十年內所有勞動階級都會被取代,其實是太過樂觀的預估,因為不只勞動業,而是幾乎所有行業都將會產生天翻地覆的改變。 當人工智慧愈來愈厲害,設置價格愈來愈低廉時,這種可以二十四小時工作,不必管一例一休,不
Thumbnail
☆2019美國「鸚鵡螺圖書獎」獲獎書籍☆ ☆普立茲獎得主《第六次大滅絕》作者 伊麗莎白‧寇伯特激賞之書☆ ☆亞馬遜書店逾兩百則評價,讀者平均四點六顆星好評推薦☆ ➢➢嚴峻的氣候與環境挑戰當前,全球糧食危機迫在眉睫, 想要繼續餵飽全世界,就得在傳統與與創新間找出「第三條路」!
Thumbnail
本文為「Robotics 2.0系列」第二篇。在前一篇文章〈AI重新定義機器人〉中,我們談到AI機器人和傳統機器人最大的不同在於自主學習能力,而這樣的改變將使得AI機器人有潛力顛覆各大產業。但究竟AI機器人會發展出什麼樣的應用?對各個產業又會有什麼影響?