【數學】用國中的觀點來認識高中的神奇不等式 - 算幾不等式

更新 發佈閱讀 3 分鐘

數學專頁久違的更新,最近會盡量這裡也不要富奸(汗)

先前在推特上看到一張圖滿有趣的,圖片上有兩個圓,關係為外切,還有它們的一條公切線,底下有一個不等式,稍微移項就是所謂的「算幾不等式」。

圖片如下

raw-image

兩個圓探討它們的公切線,是國中講到圓的切線時的一個重點,這個證明結合了幾何圖形和不等式,是我從來沒有想過的,而且也發現可以嘗試整理成國中的延伸教材。

圖片上紅色的線段是兩個圓的圓心連線,也就是「連心線」,如果是外切,連心線的長度正好會是兩圓半徑的總和。我們將看到底下那條公切線,意思是這條線同時是這兩個圓的切線,與兩圓的交點都恰巧只有一點,這個點我們就稱為該圓的切點

圓心和切點的連線,既同時是半徑,又同時與切線垂直,這是國中講到圓的切線時很重要的一個性質。利用這個性質,可以在原圖上畫出輔助線,並且得到隱藏在其中的直角三角形

raw-image

紅色線段已經知道長度了,而(圖二)的綠色線段剛好是大圓與小圓的半徑差,剩下的橘色線段,透過畢氏定理可以求得,剛好也就是藍色的標示部分。我們知道直角三角形的斜邊是三條邊裡最長的,所以紅色線段會大於等於藍色線段,這也就是(圖一)的結果。

到這個部分都還不會提到這個不等式的名字,但我們透過兩圓的公切線可以衍生出算幾不等式的結果,甚至能讓學生瞭解到,如果兩個圓一樣大(也就是半徑一樣),那不等式就會變成等式,這個性質也能和算幾不等式的敘述相對應。

在高中數學會有一個單元介紹到算幾不等式,這是由算數平均數和幾何平均數組成的不等式。在國中階段理論上是不會介紹的,不過這個圖形證明讓我想到也許有機會做延伸,除了介紹到這個不等式,還可以多介紹這兩個平均數。

當然高中也會介紹證明方法,和圖形的方式不同,明明是從國中幾何的觀點出發,卻能得到高中代數的一個不等式,真的很神奇。

這一篇就分享自己從一張圖得到的教學想法,並沒有很仔細的講解當中的數學推導,還請見諒,也算是練習如何用簡單的文字介紹數學給大家知道,未來會更加磨練的,感謝各位的閱讀!

圖片來源:数学を愛する会


歡迎追蹤我的專題願數學與你同在 ,希望讀者們能有新收穫!

留言
avatar-img
巴斯光綸的異想世界
45會員
205內容數
我是巴斯光綸,一位喜愛電影的數學教師。 喜歡讓人願意一看再看的好電影,也喜歡用數學看待世界。
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
歐幾里得:幾何公設 1. 從一點向另一點可以引一條直線。 2.任意線段能無限延伸成一條直線。 3.給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 4.所有直角都相等。 5.若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於兩個直角,則這兩條直線在這一邊必定相交。
Thumbnail
歐幾里得:幾何公設 1. 從一點向另一點可以引一條直線。 2.任意線段能無限延伸成一條直線。 3.給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 4.所有直角都相等。 5.若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於兩個直角,則這兩條直線在這一邊必定相交。
Thumbnail
歐幾里得:幾何公設 從一點向另一點可以引一條直線。 任意線段能無限延伸成一條直線。 給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 所有直角都相等。 若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於雨個直角,則這兩條直線在這一邊必定相交。 古人畫正三角形 古人畫正方形 橢圓
Thumbnail
歐幾里得:幾何公設 從一點向另一點可以引一條直線。 任意線段能無限延伸成一條直線。 給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 所有直角都相等。 若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於雨個直角,則這兩條直線在這一邊必定相交。 古人畫正三角形 古人畫正方形 橢圓
Thumbnail
第三部分是推理證明跟三心,推理證明就不在這邊講了,原因有兩個,第一個是現在基本上不考,第二個是目前的數學教育來說,程度不夠的人去鑽研效果不好。簡單說就是如果前面底子沒打好,證明會不知道怎麼下手,如果基礎夠牢,現在國三證明題並不會太難解決。所以請適量處理,切勿太想要弄懂而花太多時間。
Thumbnail
第三部分是推理證明跟三心,推理證明就不在這邊講了,原因有兩個,第一個是現在基本上不考,第二個是目前的數學教育來說,程度不夠的人去鑽研效果不好。簡單說就是如果前面底子沒打好,證明會不知道怎麼下手,如果基礎夠牢,現在國三證明題並不會太難解決。所以請適量處理,切勿太想要弄懂而花太多時間。
Thumbnail
圓形沒辦法就題型一個個解釋,這真的不如去買參考書,把詳解都看到懂。只是就整合性而言,筆者比較建議,教的時候以動態畫圖輔助,學的人也可以透過這個方式,發現自己哪邊卡住。卡住的原因不見得是空間能力不佳,往往只是因為順序差了一點,讓後面整個都歪掉而已。
Thumbnail
圓形沒辦法就題型一個個解釋,這真的不如去買參考書,把詳解都看到懂。只是就整合性而言,筆者比較建議,教的時候以動態畫圖輔助,學的人也可以透過這個方式,發現自己哪邊卡住。卡住的原因不見得是空間能力不佳,往往只是因為順序差了一點,讓後面整個都歪掉而已。
Thumbnail
國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人的經驗是:「沒辦法」。過去沒打好的底,想要臨時抱佛腳,在幾何這種非常需要累積的部分一定撞牆。此時想從頭鍛鍊實在很拚,做不到也不勉強,就抓好基礎題型的觀念,把握基本分就對了。 第二部分是圓形,這是
Thumbnail
國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人的經驗是:「沒辦法」。過去沒打好的底,想要臨時抱佛腳,在幾何這種非常需要累積的部分一定撞牆。此時想從頭鍛鍊實在很拚,做不到也不勉強,就抓好基礎題型的觀念,把握基本分就對了。 第二部分是圓形,這是
Thumbnail
終於到了最後,同學進入國三,嚴格說國三只有1個半學期,接著就要會考了。所以內容並不多,但學習的分量很重。國三上數學,可分為相似形、圓形與三角形的心,也就是國中幾何。基本原理要懂一點都不難,但由於國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人
Thumbnail
終於到了最後,同學進入國三,嚴格說國三只有1個半學期,接著就要會考了。所以內容並不多,但學習的分量很重。國三上數學,可分為相似形、圓形與三角形的心,也就是國中幾何。基本原理要懂一點都不難,但由於國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人
Thumbnail
國二下數學,後半進入三角形跟四邊形,這是一個讓學生備感挫折的章節,主因是圖形太多,看圖看不懂。也就是,問題不是出在不懂SAS還是ASA(驗證全等三角形的方法),或是各種定義,問題就是:「我看不懂這題怎麼解。」 四邊形 做L1跟L2兩條線平行,L3跟L4兩條線也平行,交於四個點A、B、C、D。
Thumbnail
國二下數學,後半進入三角形跟四邊形,這是一個讓學生備感挫折的章節,主因是圖形太多,看圖看不懂。也就是,問題不是出在不懂SAS還是ASA(驗證全等三角形的方法),或是各種定義,問題就是:「我看不懂這題怎麼解。」 四邊形 做L1跟L2兩條線平行,L3跟L4兩條線也平行,交於四個點A、B、C、D。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News