【數學】用國中的觀點來認識高中的神奇不等式 - 算幾不等式

更新於 發佈於 閱讀時間約 3 分鐘

數學專頁久違的更新,最近會盡量這裡也不要富奸(汗)

先前在推特上看到一張圖滿有趣的,圖片上有兩個圓,關係為外切,還有它們的一條公切線,底下有一個不等式,稍微移項就是所謂的「算幾不等式」。

圖片如下

(圖一)在推特上看到的算幾不等式圖形證明

(圖一)在推特上看到的算幾不等式圖形證明

兩個圓探討它們的公切線,是國中講到圓的切線時的一個重點,這個證明結合了幾何圖形和不等式,是我從來沒有想過的,而且也發現可以嘗試整理成國中的延伸教材。

圖片上紅色的線段是兩個圓的圓心連線,也就是「連心線」,如果是外切,連心線的長度正好會是兩圓半徑的總和。我們將看到底下那條公切線,意思是這條線同時是這兩個圓的切線,與兩圓的交點都恰巧只有一點,這個點我們就稱為該圓的切點

圓心和切點的連線,既同時是半徑,又同時與切線垂直,這是國中講到圓的切線時很重要的一個性質。利用這個性質,可以在原圖上畫出輔助線,並且得到隱藏在其中的直角三角形

(圖二)畫上輔助線可以得到直角三角形

(圖二)畫上輔助線可以得到直角三角形

紅色線段已經知道長度了,而(圖二)的綠色線段剛好是大圓與小圓的半徑差,剩下的橘色線段,透過畢氏定理可以求得,剛好也就是藍色的標示部分。我們知道直角三角形的斜邊是三條邊裡最長的,所以紅色線段會大於等於藍色線段,這也就是(圖一)的結果。

到這個部分都還不會提到這個不等式的名字,但我們透過兩圓的公切線可以衍生出算幾不等式的結果,甚至能讓學生瞭解到,如果兩個圓一樣大(也就是半徑一樣),那不等式就會變成等式,這個性質也能和算幾不等式的敘述相對應。

在高中數學會有一個單元介紹到算幾不等式,這是由算數平均數和幾何平均數組成的不等式。在國中階段理論上是不會介紹的,不過這個圖形證明讓我想到也許有機會做延伸,除了介紹到這個不等式,還可以多介紹這兩個平均數。

當然高中也會介紹證明方法,和圖形的方式不同,明明是從國中幾何的觀點出發,卻能得到高中代數的一個不等式,真的很神奇。

這一篇就分享自己從一張圖得到的教學想法,並沒有很仔細的講解當中的數學推導,還請見諒,也算是練習如何用簡單的文字介紹數學給大家知道,未來會更加磨練的,感謝各位的閱讀!

圖片來源:数学を愛する会


歡迎追蹤我的專題願數學與你同在 ,希望讀者們能有新收穫!

留言
avatar-img
留言分享你的想法!
avatar-img
巴斯光綸的異想世界
43會員
199內容數
我是巴斯光綸,一位喜愛電影的數學教師。 喜歡讓人願意一看再看的好電影,也喜歡用數學看待世界。
你可能也想看
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
歐幾里得:幾何公設 1. 從一點向另一點可以引一條直線。 2.任意線段能無限延伸成一條直線。 3.給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 4.所有直角都相等。 5.若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於兩個直角,則這兩條直線在這一邊必定相交。
Thumbnail
歐幾里得:幾何公設 1. 從一點向另一點可以引一條直線。 2.任意線段能無限延伸成一條直線。 3.給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 4.所有直角都相等。 5.若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於兩個直角,則這兩條直線在這一邊必定相交。
Thumbnail
歐幾里得:幾何公設 從一點向另一點可以引一條直線。 任意線段能無限延伸成一條直線。 給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 所有直角都相等。 若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於雨個直角,則這兩條直線在這一邊必定相交。 古人畫正三角形 古人畫正方形 橢圓
Thumbnail
歐幾里得:幾何公設 從一點向另一點可以引一條直線。 任意線段能無限延伸成一條直線。 給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 所有直角都相等。 若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於雨個直角,則這兩條直線在這一邊必定相交。 古人畫正三角形 古人畫正方形 橢圓
Thumbnail
第三部分是推理證明跟三心,推理證明就不在這邊講了,原因有兩個,第一個是現在基本上不考,第二個是目前的數學教育來說,程度不夠的人去鑽研效果不好。簡單說就是如果前面底子沒打好,證明會不知道怎麼下手,如果基礎夠牢,現在國三證明題並不會太難解決。所以請適量處理,切勿太想要弄懂而花太多時間。
Thumbnail
第三部分是推理證明跟三心,推理證明就不在這邊講了,原因有兩個,第一個是現在基本上不考,第二個是目前的數學教育來說,程度不夠的人去鑽研效果不好。簡單說就是如果前面底子沒打好,證明會不知道怎麼下手,如果基礎夠牢,現在國三證明題並不會太難解決。所以請適量處理,切勿太想要弄懂而花太多時間。
Thumbnail
圓形沒辦法就題型一個個解釋,這真的不如去買參考書,把詳解都看到懂。只是就整合性而言,筆者比較建議,教的時候以動態畫圖輔助,學的人也可以透過這個方式,發現自己哪邊卡住。卡住的原因不見得是空間能力不佳,往往只是因為順序差了一點,讓後面整個都歪掉而已。
Thumbnail
圓形沒辦法就題型一個個解釋,這真的不如去買參考書,把詳解都看到懂。只是就整合性而言,筆者比較建議,教的時候以動態畫圖輔助,學的人也可以透過這個方式,發現自己哪邊卡住。卡住的原因不見得是空間能力不佳,往往只是因為順序差了一點,讓後面整個都歪掉而已。
Thumbnail
國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人的經驗是:「沒辦法」。過去沒打好的底,想要臨時抱佛腳,在幾何這種非常需要累積的部分一定撞牆。此時想從頭鍛鍊實在很拚,做不到也不勉強,就抓好基礎題型的觀念,把握基本分就對了。 第二部分是圓形,這是
Thumbnail
國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人的經驗是:「沒辦法」。過去沒打好的底,想要臨時抱佛腳,在幾何這種非常需要累積的部分一定撞牆。此時想從頭鍛鍊實在很拚,做不到也不勉強,就抓好基礎題型的觀念,把握基本分就對了。 第二部分是圓形,這是
Thumbnail
終於到了最後,同學進入國三,嚴格說國三只有1個半學期,接著就要會考了。所以內容並不多,但學習的分量很重。國三上數學,可分為相似形、圓形與三角形的心,也就是國中幾何。基本原理要懂一點都不難,但由於國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人
Thumbnail
終於到了最後,同學進入國三,嚴格說國三只有1個半學期,接著就要會考了。所以內容並不多,但學習的分量很重。國三上數學,可分為相似形、圓形與三角形的心,也就是國中幾何。基本原理要懂一點都不難,但由於國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人
Thumbnail
國二下數學,後半進入三角形跟四邊形,這是一個讓學生備感挫折的章節,主因是圖形太多,看圖看不懂。也就是,問題不是出在不懂SAS還是ASA(驗證全等三角形的方法),或是各種定義,問題就是:「我看不懂這題怎麼解。」 四邊形 做L1跟L2兩條線平行,L3跟L4兩條線也平行,交於四個點A、B、C、D。
Thumbnail
國二下數學,後半進入三角形跟四邊形,這是一個讓學生備感挫折的章節,主因是圖形太多,看圖看不懂。也就是,問題不是出在不懂SAS還是ASA(驗證全等三角形的方法),或是各種定義,問題就是:「我看不懂這題怎麼解。」 四邊形 做L1跟L2兩條線平行,L3跟L4兩條線也平行,交於四個點A、B、C、D。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
一下的另一個單元,拆成一元一次不等式,還有屬於對數字敏銳度的比例與統計。這要分開講一下,首先談不等式,這跟之前的方程式有不小差距,許多同學會一下子轉不過來,尤其是正負號的轉變上。
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News