Udemy課程心得- Python for Time Series Data Analysis

更新於 發佈於 閱讀時間約 4 分鐘
最近為了系統性複習有關時間序列的知識,在Udemy上了一堂評價不錯的課程Python for Time Series Data Analysis。整體來說,我覺得課程是值得推薦初學者的。但因為課程對於很多時間序列的模型只是淺淺帶過,如果對時間序列已經有了解的人會比較像是浪費錢。

這裡我將從教學模式課程內容簡單的說些感想。
首先先是教學模式,以下先列出我覺得課程的優點:
  1. 整體時間序列的架構蠻清楚的。相比於有名的時間序列電子書Forecasting: Principles and Practice也簡單實用的多(數學沒那麼多)。
  2. 課程長度適宜,搭配Udemy對手機端也很friendly所以上起來沒什麼壓力。適合我這種專注力只能一次集中10–20分鐘的人。
  3. 課程附的Jupyter Notebook做得很用心,很多補充的知識背景可以去探索。還有裡面的sample code基本上可以直接拿去當模板用了。
  4. 很適合Python新手,課程中也有4個章節從Numpy開始教,到Pandas還有可視化。當然這對我來說我會覺得這同時也是個缺點,因為這代表真正在時間序列上的課程時長沒有想像的多。
另外討論一下我覺得教學模式上的缺點:
  1. 對模型理論的講解有點太過簡單化了。
  2. 還是以舊式的ppt講法一頁頁在讀。補充上面的第一點,我倒覺得很多YouTube教學還比課堂上說的清楚。未來有機會也想整理出我覺得關於時間序列說的很好的YouTube影片,如果有的話網址會補上在這。
  3. 範例基本上都是些完美老掉牙案例。講者有時候會分享些自己親身心得,但我覺得可以再多一些,畢竟這才是比較難從其他地方學到的。

接下來討論一下課程內容。總共的課程時長是15.5小時,卻有大概5小時(1/3)的時間在介紹與教基礎python,從剩下的第七章開始才正式進入時間序列的主題。接下來以每章來大致說一下會談到什麼,大家也可以依照自己理解程度看看有沒有上這課程的必要。
Section 7 — Time Series Analysis with Statsmodels: 這章終於開始接觸time series重要的python包Statsmodels,然後淺談了時間序列的基礎。但這裡介紹的都還是非預測的部分,主要是對一組時間序列如何進行拆分,大致會拆成ETS (Error-Trend-Seasonal)。這裡還會特別說根據ETS概念衍伸而來的Holt — Winters Methods,也是利用這樣拆分的概念作為模型的理論。
Section 8 — General Forecasting Models: 這才是整個課程的主軸,總共有快要6小時的內容。我個人認為雖然說Models是複數,但其實講者只是想帶出最有名的ARIMA以及SARIMA而已,可以說他是ARIMA的粉絲。好處是身為知名度最大的模型,ARIMA整套在這段被解釋的最詳細,而且講者提供的sample code整套流程是很完整的。跟上一章結合起來是整個課程比較好的兩個章節。
Section 9 — Deep Learning for Time Series Forecasting: 這章開始就讓人比較失望,我覺得講者可能認為SARIMA一招打天下就夠了。他自己也在課程中說覺得沒有必要用Deep Learning來做時間序列這點我是同意的因為在實際商務上Deep Learning就像是黑盒子根本無法解釋,但以它現在在Machine Learning的重要程度來說我覺得它值得更長的篇幅來探討,並跟其他方法橫向比較。不過若是完全沒有接觸過Keras包,是可以在這學會搭一個簡單的LSTM模型。
Section 10 — Facebook’s Prophet Library: 最失望的一章,身為現在使用最多的時間序列包居然只是簡單的用官方網站的範例帶過。當然它使用上非常簡單,不過因為我自己在不同案例使用上卻覺得有不少限制並且還有更多可以深入探討的地方,所以看到這樣匆匆帶過覺得有點不應該啊。

總結來說,從兩個部分討論了這個課程只是想讓如果還在考慮要不要上這門課的你/妳可以有個考慮依據,並且也算是個自己看完一遍後的小整理。當然,時間序列是個很大的領域,也不能指望就單純一堂課就能掌握所有囉,所以這也只是當作個參考,其他還是要靠自己去實作。
那就先這樣。如果有任何問題歡迎留言!
avatar-img
1會員
3內容數
暫居上海 | 來自台灣 | 數據分析 | 學習分享 不定期分享內容,歡迎一起成長
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
大衛的沙龍 的其他內容
直到今天5/1日,我已經在上海WFH 42天了。我敢保證上海的居家辦公絕對比世界上任何地方的居家辦公都還困難。
直到今天5/1日,我已經在上海WFH 42天了。我敢保證上海的居家辦公絕對比世界上任何地方的居家辦公都還困難。
你可能也想看
Google News 追蹤
Thumbnail
/ 大家現在出門買東西還會帶錢包嗎 鴨鴨發現自己好像快一個禮拜沒帶錢包出門 還是可以天天買滿買好回家(? 因此為了記錄手機消費跟各種紅利優惠 鴨鴨都會特別注意銀行的App好不好用! 像是介面設計就是會很在意的地方 很多銀行通常會為了要滿足不同客群 會推出很多App讓使用者下載 每次
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
Thumbnail
從範例學python的目標讀者: 針對剛進入的初學者,想學習Python語言。 有基礎本數學邏輯基礎即可。 從小遊戲學python的目標讀者: 針對已經有經驗的C/C++, Python, 或其他有程式基礎的讀者。 想實作一些小專案,從實做中學習如何分析需求、元件分拆、到底層實作
Thumbnail
學習生成式AI,不僅僅是掌握幾個工具,而是從全方位了解AI的發展範疇及其潛力。我經常在企業教授AI課程時,會遇到HR詢問:某些工具用不上,可以不教嗎?當然可以,但如果同仁不了解生成式AI在「數位內容」上的廣泛應用,又如何掌握大語言模型的發展邊界?
Thumbnail
僅僅用了兩天就完成Google AI Essentials課程,整個課程總長約9小時,但實際上花掉的時間不用這麼多。這算是我第一次上Coursera的課、也是第一次上Google的課程,也得到不少心得。
統計真的是一門博大精深又挺有趣的知識,另驚訝於全班大約有2/3都學過,只能在井底蛙蛙兩聲,文組~~~幫自己拍拍 說實在老師很~
在一次五天的年假中,我決定開始學習Python編程。雖然最初進展順利,但後來發現自己在解題和邏輯方面遇到了困難。經過思考後,我決定轉而學習C/C++,並且制定了一個計畫,希望成為一名後端工程師。這將需要挑戰我的時間管理能力。
Thumbnail
1.一年級數學代課:比長短 今天去帶了一堂一年級數學,比長短。 發現自己很有進步。 1.學生嘰嘰喳喳,愛發言。我能馬上告知,「我需要」上課的樣子是什麼。很具體的劃界線與說明。 2.學生桌上有教具操作,有課本、有剪刀,很容易在說明、在講解、再拋問題給他們思考時,有人在玩手上的東西,在放空。而我
Thumbnail
前言 現代人的數位資料真的是非~常多,為了增加容量,常得付費升級手機、雲端、硬碟...等規格,但這真是必要的花費嗎?如果今天有個課程能讓你省下這筆費用且終身受用,你願不願意嘗試呢? 購買課程原因 撰寫文章整理資料時,發現查找照片、檔案不易,即便用搜索功能也因為命名方式沒有系統,跑出結果還是得在耗時篩
Thumbnail
/ 大家現在出門買東西還會帶錢包嗎 鴨鴨發現自己好像快一個禮拜沒帶錢包出門 還是可以天天買滿買好回家(? 因此為了記錄手機消費跟各種紅利優惠 鴨鴨都會特別注意銀行的App好不好用! 像是介面設計就是會很在意的地方 很多銀行通常會為了要滿足不同客群 會推出很多App讓使用者下載 每次
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 整理目前手上有的素材: AI說書 - 從0開始 - 180 | RoBERTa 預訓練前言:RoBERTa 預訓練前言 AI說書 - 從0開始 - 181 | 預訓
Thumbnail
從範例學python的目標讀者: 針對剛進入的初學者,想學習Python語言。 有基礎本數學邏輯基礎即可。 從小遊戲學python的目標讀者: 針對已經有經驗的C/C++, Python, 或其他有程式基礎的讀者。 想實作一些小專案,從實做中學習如何分析需求、元件分拆、到底層實作
Thumbnail
學習生成式AI,不僅僅是掌握幾個工具,而是從全方位了解AI的發展範疇及其潛力。我經常在企業教授AI課程時,會遇到HR詢問:某些工具用不上,可以不教嗎?當然可以,但如果同仁不了解生成式AI在「數位內容」上的廣泛應用,又如何掌握大語言模型的發展邊界?
Thumbnail
僅僅用了兩天就完成Google AI Essentials課程,整個課程總長約9小時,但實際上花掉的時間不用這麼多。這算是我第一次上Coursera的課、也是第一次上Google的課程,也得到不少心得。
統計真的是一門博大精深又挺有趣的知識,另驚訝於全班大約有2/3都學過,只能在井底蛙蛙兩聲,文組~~~幫自己拍拍 說實在老師很~
在一次五天的年假中,我決定開始學習Python編程。雖然最初進展順利,但後來發現自己在解題和邏輯方面遇到了困難。經過思考後,我決定轉而學習C/C++,並且制定了一個計畫,希望成為一名後端工程師。這將需要挑戰我的時間管理能力。
Thumbnail
1.一年級數學代課:比長短 今天去帶了一堂一年級數學,比長短。 發現自己很有進步。 1.學生嘰嘰喳喳,愛發言。我能馬上告知,「我需要」上課的樣子是什麼。很具體的劃界線與說明。 2.學生桌上有教具操作,有課本、有剪刀,很容易在說明、在講解、再拋問題給他們思考時,有人在玩手上的東西,在放空。而我
Thumbnail
前言 現代人的數位資料真的是非~常多,為了增加容量,常得付費升級手機、雲端、硬碟...等規格,但這真是必要的花費嗎?如果今天有個課程能讓你省下這筆費用且終身受用,你願不願意嘗試呢? 購買課程原因 撰寫文章整理資料時,發現查找照片、檔案不易,即便用搜索功能也因為命名方式沒有系統,跑出結果還是得在耗時篩